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Prediction Company:

The Business of Model-Based Trading
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Foundation of Contract with UBS

iction Company builds models to predict financial markets from historical 

 commits to trade based on predictions (given performance threshold).

ts are shared.

Nature of the relationship

el-based trading experiment is quite pure (no traders).

 monitors trading, does all back-office.

ing by bank is proprietary (no publically available fund, currently).

iction Company is mostly comprised of software engineers and researchers

raders.

iction Company has developed substantial technology in order to implemen

 research infrastructure and production infrastructure.
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Modeling: what is needed

n (or at least cleanable) data, e.g. at least 10 years.

ictable structure in the data, strong enough to overcome execution costs.

y instances (many degrees of freedom).
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Modeling: producing aim positions
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Modeling: executing orders
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Prediction Company Models

to generate aim positions daily:

 term return predictions (months)

ium term return predictions (days)

saction cost predictions (built from execution data)

ket impact predictions

to execute orders intra-day:

t term (minutes - hours) predictions of both direction and liquidity.
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Modeling: a geometric picture
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Modeling: a more realistic picture

Edge

= expected gain

Pt

Et

Pt 1–

Realizable

Gt RMI
t=

Gain unre

market im

Gain unrea

execution 

C Pt Pt–(



10

sts

• E  only from execution

da

• T

• E

-

-

-

P r e d i c t i o n  C o m p a n y

Modeling: importance of modeling execution co

xecution costs (slippage + fees + opportunity cost) can be accurately modeled
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Positions scaled up
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Ramping up: wishful thinking

Edge
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Ramping up: more realistic
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Making Believable Models

iggest problems:

ited data overfitting

stationarity

 approaches to coping with the problems

larization, e.g.

ge regression for linear fits

ight decay for neural networks

ptive models

ucial issue: time scale of adaptation

poral consistency conditions
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Nonstationarity

ctive signal strength from 1975 - 1998 for two predictive signal
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What else can go wrong

den” nonstationarity: sudden interruption or shifts in market dynamics (e.g

 one sector to another; exposure to unrecognized, unhedged risk factors).

ect exposure to risk factors (e.g. market correlation)

ase in execution costs (causing possible over-ramped positions).

ctural market changes (e.g. decimalization, day-trading?).

ctural investor change (e.g. LTCM effects; political climate of partner).
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Future Business Directions

-based trading products

er frequency (longer time-scale), higher capacity products; eventually towa

ucts.

er frequency products, eventually toward automated market making, execu

e to other markets (Fx, commodities).

 fincancial products

ken purity? E.g., decision support.

execution (wholesale: mutual funds; retail: online brokerage).

idual investor services.

nancial products

scale data-mining on proprietary data. E.g.:

ict customer preferences

lysis of Bio/pharm data

ict packet flow through networks
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