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Abstract

We study the volatility of the MIB30-stock-index high-frequency data from November 28, 1994
through September 15, 1995. Our aim is to empirically characterize the volatility random walk in
the framework of continuous-time �nance. To this end, we compute the index volatility by means
of the log-return standard deviation. We choose an hourly time window in order to investigate
intraday properties of volatility. A periodic component is found for the hourly time window, in
agreement with previous observations. Fluctuations are studied by means of detrended uctuation
analysis, and we detect long-range correlations. Volatility values are log-stable distributed. We
discuss the implications of these results for stochastic volatility modelling. c© 1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

In this paper, we study the stochastic properties of MIB30-stock-index volatility.
The Black–Scholes=Merton (BS=M) framework for option pricing is based on the as-
sumption of constant volatility [1]. In practice, volatility is time dependent and the
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characterization of its temporal evolution is one of the main task of the increasing num-
ber of physicists working in the �nancial �eld [2]. This problem has been thoroughly
studied both by economists [3,4] and mathematicians [5]. However, the emphasis has
been mainly given to analytically tractable problems.
Here, we use di�erent approaches in the attempt to empirically characterize the

MIB30-stock-index volatility. Among the various possible methods, we focus on the
stochastic continuous-time volatility approach to option pricing.
The paper is divided as follows: in Section 2, we present an outline of the stochastic-

volatility theory; in Section 3, the main empirical results are discussed; �nally, con-
clusions are drawn in Section 4.

2. Theory

In continuous-time �nance, stochastic volatility, �t , can be modeled by means of two
stochastic di�erential equations [4], a two factor model:

dP(t) = �(P; t)P(t) dt + �tP(t) dw1(t) ; (1)

d�t = �(�t; t) dt + �(�t; t) dw2(t) ; (2)

where �(P; t), �(�t; t) and �(�t; t) are deterministic functions of the spot price, P(t),
or of the stochastic volatility, �t , and of time, t; the volatility, �t , is a stochastic
variable, w1 and w2 are standard one-dimensional Brownian motions with correlation
d〈w1w2〉= � dt for some constant �. The two processes are independent if and only
if � = 0 [5]. The problem is then to �nd a unique solution (P̃; �̃) for the system of
stochastic di�erential equations (1) and (2). In the original BS=M model, � and �
vanish and � and � are constant.
If the volatility is a stochastic process, continuous riskless hedging in the sense of

BS=M (using an option and the underlying asset) is not possible [6]. This claim is
based on a theorem concerning multi-factor stochastic models. In the particular case
of the two-factor model of Eqs. (1) and (2), in order to form a continuous riskless
hedge, a �nancial instrument with price fully correlated to volatility would be necessary
[6]. A clear and exhaustive introduction to multi-factor models can be found in Marco
Avellaneda’s tutorials. 2

If the ansatz of Eq. (2) is accurate, the empirical analysis of stochastic volatil-
ity should lead to the determination of the coe�cients �(�t; t) and �(�t; t) [7], thus
completely specifying its stochastic dynamics. In practice, this task can be very di�-
cult, due to data incompleteness and to possible intrinsic mathematical di�culties. For
instance, more than one set of the coe�cients could well reproduce the known statistical
properties of the volatility time series.

2 See: www.math.nyu.edu=faculty=avellane=risk.html.
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3. Empirical study

We have analyzed MIB30 high-frequency data from 28 November 1994 up to 15
September 1995. MIB30 is an o�cial index of the Italian Stock Exchange, it is com-
posed by the 30 Italian shares with the highest capitalization and trading volumes, and
is recorded every minute. The data set is composed by over 80,000 data: 420 data for
every trading day. Considering the series of index values, Pj�, where � = 1 min and
j=0; : : : ; 83579, we divide our data into non overlapping intervals or time windows of
length T . We choose a time horizon or time scale, �t, which is an integer multiple
of �. We compute the logarithmic returns related to every interval T as follows:

rn�t = log
P(n+1)�t
Pn�t

; n= 0; : : : ; N − 1 ; (3)

where N is such that T = N�t.
Financial practitioners de�ne historical volatility as the standard deviation of the log-

arithmic returns [8]. Following them, we estimate the volatility for every time window
as follows:

�� =

√√√√ 1
N − 1

N−1∑
n=0

(rn�t − �r )2 ; (4)

where �r is the mean value given by

�r =
1
N

N−1∑
n=0

rn�t : (5)

If �t is measured as a fraction of year, we can de�ne the annualized volatility

��an =

√
1
�t
�� : (6)

In order to investigate intraday properties of volatility, we chose a minutely time hori-
zon and an hourly time window. The results of the 1393 annualized volatility estimates
are plotted in Fig. 1.
In Fig. 2 we present the power-spectrum-density estimate computed by means of the

correlogram method [9]. The peak at f=fs = 1=7 is due to a daily periodicity of the
volatility values. In fact, in a day there are seven trading hours and with an hourly
time window we get seven volatility estimates per day. Indeed, intra-day volatility is
U-shaped: it is higher at the opening and at the closure of the market. This fact has
already been observed by economists, and it is also known in the physics literature
[10]; it probably reects the lower trading activity around noon. As a further remark,
we are not able to detect any low frequency seasonality or observe a clear icker
behavior at low frequencies [11], as our time series is less than one year long.
In Fig. 3, an estimate of the volatility probability density function is given. We

compare the experimental histogram with a log-stable distribution whose parameters, �
and  are obtained from empirical data. Stable or Pareto–L�evy distributions [12] have
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Fig. 1. Annualized volatility estimate; the time window is 1 h; the time horizon is 1 min.

Fig. 2. Power spectrum density estimate. The sampling frequency, fs, is equal to 1=h.

been introduced in the 1960s in �nance and economics [13] and their scaling properties
have been recently investigated in relation to the S&P500 stock index [14]. Zero mean
stable distributions are described by the following equation:

P�; (x) =
1
�

∫ ∞

0
exp(−q�) cos(qx) dq ; (7)

where �= 1 and 2 give, respectively, the well-known Cauchy and Gauss stable distri-
butions. A random variable is said to be log-stable distributed if its logarithm follows
a stable distribution.
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Fig. 3. Probability density function estimate; open circles: experimental histogram; solid line: log-L�evy �t
with � = 1:6 and  = 0:13; dash-dotted line: log-normal �t with mean value =2:34 and standard deviation
=0:41:

In order to determine the experimental points, the volatility range has been divided
into 50 equal intervals (bins). From Fig. 1, it can be seen that there are two outliers.
If the outliers are taken into account, a log-L�evy distribution with exponents � = 1:6
and =0:13 gives an acceptable �t of the experimental data (�2 ' 75 with 47 degrees
of freedom), whereas the log-normal �t with mean value and standard deviation drawn
from data does not agree in the tail region (�2 ∼ 104). Conversely, if the two outliers
are rejected as bad data points, and a new histogram is computed using twenty bins, the
log-normal �t is as good as the log-L�evy �t (for the log-L�evy �t, �2 is 29.2, whereas
for the log-normal, it is 28.7; this time there are 17 degrees of freedom).
In Fig. 4, the results of detrended uctuation analysis (DFA) are presented. DFA is

used to investigate the presence of correlations in time series [10,11,15,16]. A volatility
walk is de�ned by means of the displacement y(t)

y(t) =
t∑
i=1

��(i) : (8)

The mean square uctuation, F(t), around the average displacement is given by

F(t) =
√

〈�y(t)2〉 − 〈�y(t)〉2 ; (9)

where �y(t) = y(t0 + t)− y(t0), and 〈·〉 is the average over all the initial steps t0.
F(t) follows the scaling law:

F(t)˙ tz : (10)

If long-range correlations are present [17], the scaling exponent attains values z 6= 1
2 .

The points in Fig. 4, top, have been computed according to Eq. (9) with overlapping
subseries. Forty F(t) estimates are plotted with their error bars. Errors are computed
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Fig. 4. DFA; top: F(t) for the volatility walk; bottom: as top, but for day-U-shaped volatility walk, see text
for explanation.

assuming a Gaussian distribution. The solid line is a least-square linear �t of the �rst
six points, corresponding to one trading day; its slope gives z=0:64±0:23. The dash–
dotted line is a least-squares �t of the next 34 points and has a slope z = 0:76± 0:16.
Therefore, from our data we cannot safely conclude that there is an exponent cross-over
at t = 1 trading day, as was found in Ref. [11]. However, it is possible to argue that
z¿ 1

2 ; indeed, a linear �t of the 40 points gives z = 0:72± 0:10.
In Fig. 4, bottom, we present F(t) computed by “day-U-shaping” volatility values

according to the following recipe:

�∗(i) = ��(i)=n(i); i = 1; : : : ; 1393 ; (11)

where the normalization coe�cient, n(i), is given by

n(i) =
1
q

∑q−1
k=0 ��(i + 7k)

〈 ��〉 ; i = 1; : : : ; 7 ; (12)

where q= 1393=7 and n(i) has period 7

n(i + 7h) = n(i); h ∈ Z : (13)

In this way, the daily periodicity is removed and the intra-day estimate of z is
0:72± 0:26, whereas the extra-day estimate is z=0:77± 0:16. The possible cross-over
seems to be suppressed, and the full linear least-square �t gives z = 0:76 ± 0:10, that
is z¿ 1

2 .



154 M. Raberto et al. / Physica A 269 (1999) 148–155

4. Summary and conclusions

In this paper, we have empirically studied the intra-day statistical properties of
stochastic volatility for the MIB30 index. Stochastic volatility poses serious problems in
contingent claim analysis and risk management. In many cases, risk managers consider
a daily time window for computing volatility and perform daily hedging. However, the
preliminary analysis of a recent liquidity crisis of a hedge fund seems to suggest that
frequent intra-daily hedging could be necessary [18].
Empirical analysis constrains the form of the stochastic di�erential equations describ-

ing the time evolution of volatility.
In particular, we �nd in the MIB30 index that the volatility has a periodic behavior

with a one trading day period. Due to the limited amount of available data, we are not
able to detect any low-frequency seasonality.
Probability-density-function estimates indicate that volatility is log-stable distributed;

if outliers are taken into account a log-L�evy distribution gives a better �t than the
usually assumed log-normal distribution [7].
Finally, the DFA results are compatible with the presence of long-range volatility

correlations, but we cannot safely conclude that there is a crossover between intra-day
and extra-day scaling exponents.
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