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ABSTRACT

In this papeT we study the performance of the GARCH model and two of
its non-linear modifications to forecast weekly stock market volatility. The
models are the Quadratic GARCH (Engle and Ng. 1993) and the Glosten.
Jagannathan and Runkle (1992) models which have been proposed to
describe, for example, the often observed negative skewness in stock
market indices. We find that the QGARCH model is best when the
estimation sample does not contain extreme observations such as the 1987
stock market crash and that the GJR model cannot be recommended for
forecasting.
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INTRODUCTION

A stylized fact of financial time series is that aberrant observations seem to cluster in the sense
that there are periods where volatility is larger than in other periods. Typically, these volatile
periods correspond to major (economic) events such as stock market crashes and oil crises.
Although most evidence in empirical finance indicates that retums on financial assets seem
unforecastable at short horizons (see e.g. Granger. 1992, for a recent survey), the current
consensus is that the variance of retums can be predicted using particular time series models.
Within this class of models, the Generalized Autoregressive Conditional Heteroscedasticity
(GARCH) model proposed by Engle (1982) and Bollerslev (1986) seems to be the most
successful (see Bollerslev, Chou and Kroner, 1992, for a survey of GARCH applications).
Roughly speaking, in a GARCH process the error variances can be modelled by an
Autoregressive Moving Average (ARSIA) type process. A useful feature of the GARCH model
is that it can effectively remove the excess kurtosis in retums.

A further stylized fact is that the distribution of retums can be skewed. For example, for
some stock market indices, retums are skewed to the left. i.e. there are more negative than
positive outlying observations. The intrinsically symmetric GARCH model cannot cope with
such skewness and, hence, one can expect that forecasts and forecast error variances from a
GARCH model may be biased for skewed time series. Recently, a few modifications to the
GARCH model have been proposed, which expbcitly take account of skewed distributions. In
our paper we consider two such modifications, the Quadratic GARCH model (QGARCH)
proposed by Engle and Ng (1993) (see also Sentana (1995) for a recent discussion of QGARCH
models), and the model advocated in Glosten, Jagannathan and Runkle. 1992, to be abbreviated
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as GJR' The focus is the out-of-sample forecasting performance of these two non-linear
models relative to the standard GARCH model, and on the performance of all three models
relative to the simple random walk forecasting scheme. We limit our analysis to forecasting
volatility and not the mean of the time series.

In the next section we present the models used in our modelling and forecasting exercise. In
the third section we discuss the stock market data we use in our empirical study. In the fourth
section we discuss some within-sample estimation results. In the fifth section we evaluate the
forecasting performance of the GARCH, QGARCH and GJR models as well as the Random
Walk model. In the final section we present conclusions.

GARCH MODELS

Consider a stock market index /, and its return r,, which we construct as r, = log/, - log/,.,. In
this paper the index / denotes weekly observations. Although higher-order models are
sometimes found to be useful, the dominant empirical model for r, is the autoregression of
order p with GARCH(1,1) disturbances iARip) - GARCH(1,1)), which can be expressed as

e,~NiO.h,) (1)
h,= Q)-t-ael,-*-fih,.^

where B is the backward shift operator defined by B*jc, = x,.t. The parameter ^ reflects a constant
term, which in practice is typically estimated to be close or equal to zero. Furthermore, p is
usually 0 or small, suggesting that there are usually no opportunities to forecast r, from its own
past. It is assumed that the solutions of the characteristic equation 0 (z) = 0 lie outside the unit
circle and that a), a. fi>0 and a + fi<\ (see Bollerslev, 1986).

AU odd moments of e, in model (1) equal zero, and hence e, and r, are symmetric time series
with fat tails. For stock market time series, however, r, may display significant negative
skewness. This empirical stylized result seems to be due to the fact that stock market crashes
occur more frequently and more quickly than stock market booms, and that the absolute size of
crashes is much larger. Two simple classes of models that can cope with skewed returns are the
(Quadratic GARCH model proposed by Engle and Ng (1993) and the so-called GJR model,
advocated by Glosten, Jagannathan and Runkle (1992). The QGARCH model differs from
model (1) by

h,= a)+aiE,.,-y)^ + fih,., (2)

When Y takes a positive value, it is clear from model (2) that a negative e,_,, value has a larger
impact on h,. The GJR model is also similar to model (1), but now the h, process is given by

/I, = (y H- ae?_, -H 6D,_,C?., + fih,., (3)

' An altemative model that can generate skewed time series patterns is the so-called Exponential GARCH model
(EGARCH) proposed in Nelson (1990). Although we have considered this model as a possibly useful candidate for
our purposes, it was found not to be veiy useful for repeated forecasting exercises. Given the latter purpose of
repeatedly specifymg and estimating GARCH models, an obvious requirement of these models is that the estimation
method is reasonably simple and that parameter convergence occurs reasonably quick. Unfortunately, it has been our
experience while ninning the estimation procedures that parameter estimation of the EGARCH model can be tedious
In fact, m almost all cases, no quick convergence was obtained. Only when we were able to generate a particular set of
starting-values with a precision of 8 digits could we obtain convergence.
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where D,_^ is a dummy variable which takes a value of 1 when e,.| <0 and value of 0 when
c,-, ^0 . Similar to the QGARCH model, when 5>Q, negative shocks will have a larger impact
on h, than positive shocks. Stationarity and stability of these models is discussed in the relevant
references. The QGARCH and GJR models can improve upon the standard symmetric GARCH
since they can cope with negative (or positive) skewness, the latter depending on the sign of the
additional parameter.

THE DATA AND RESEARCH METHOD

The data we analyse in this paper are weekly observed indices for the stock markets in Germany
(DAX), The Netherlands (EOE), Spain (MAD), Italy (MIL) and Sweden (VEC). The data
span 9 years, with the first observation being week 1 in 1986 and the last observation being
week 52 in 1994. In our case, the weekly observations are taken as the values that are recorded
on Wednesdays.

A summary of some characteristics of the r, series is given in Table I. The number of
observations equals 469 for all five stock markets. The mean and variance are all quite small.
The excess kurtosis of the series exceeds 0, indicating the necessity of fat-tailed distributions to
describe these variables. A key feature of Table I, however, is that the estimated measure of
skewness is large and negative. Especially for the DAX and EOE indices, skewness is large in
an absolute sense.

The approach taken in this paper is as follows. Since our main goal is to evaluate the volatility
forecasting performance of the three GARCH models, we wish to consider a reasonably large
hold-out sample. We thus choose four years of observations to estimate the various model
parameters. Furthermore, since it is not a priori assumed that one model necessarily dominates
other models over the whole sample, we repeat our modelling and forecasting exercise for
different subsamples. We thus fit the models to a sample of four years, generate a one-step-
ahead forecast, delete the first observation from the sample and add the next one, and generate
again a one-step-ahead forecast. In order to evaluate possibly changing patterns over the years,
we evaluate forecasting performance for the years 1990 to 1994. This results in an evaluation of
five times about 52 forecasts. Since we wish to minimize the impact of outlying observations on
forecast evaluation, we use the Median of Squared Error (MedSE) instead of the usual Mean
SE.

Table I. Summary statistics of data on retums. The sample covers weekly observations for the years 1986
to 1994

Stock market

Germany (DAX)
Holland (EOE)
Spain (MAD)
Italy (MIL)
Sweden (VEC)

n

469
469
469
469
469

Mean
(xlO-")

9.257
9.335

22.225
6.981

23.848

Variance
(xlO-")

7.889
6.451
9.333
9.937
9.836

Skewness

-0.972
-1.455
-0.531
-0.162
-0.348

Excess
kurtosis

4.865
9.238
3.419
0.532
5.103

Source of data: Datastream.
The weekly data concern Wednesday observations. The notation (10'*) means that the reported value should be
multiplied by 10"*
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WITHIN-SAMPLE ESTIMATION

In this section we present some within-sample estimation results to give an idea of the possible
usefulness of (non-linear) GARCH models. To save space we consider the sample covering the
period 1986 to 1989, which gives an indication of the typical estimated parameter values.
Notice that this period contains the stock market crash in 1987, which effects the skewness of
the data.

In Table II we report the relevant parameter estimates for the GARCH model (1). Next to the
parameter estimates, we report the value of the AIC and the value of the Log Likelihood (LnL).
We present these AIC and LnL values to compare models (1), (2) and (3). We further report the
values of Box-Pierce statistics for ijh]'^ and if/h,in order to check the empirical validity of
the models. It is clear from Table II that the parameters a and /? in the GARC^(1,1) model are
usually significant at the 5% level, and hence that the constant variance model can be rejected, at
least within sample. Furthermore, for two cases the sum of the a and fi parameters is close to
unity. However, for no index do we observe that a + 0>\.

In Table III we report some estimation results for the non-linear variants of the GARCH (1,1)
model. We report the estimates for the y parameter in the QGARCH model and the d parameter
in the GJR model. Although the results should be interpreted with care since not all non-
normality may have been removed, the r-ratios in Table III indicate that the y and 6 parameters
are significant at the 10% level at least for the DAX, EOE and VEC indices. The possible
usefulness of non-linear modifications to the linear GARCH model seems to be confirmed by
the LnL values, although the AIC values do not suggest a clear favourite. Unreported estimates
of y and d in other samples shows that these parameters are not always relevant. Hence, the
relevance of these parameters can depend on one or two observations being included in or
deleted from the sample.

Table n. Estimation results for GARCH models for 1986-89

Index

DAX

EOE

MAD

MIL

VEC

P

0

0

1

1

0

Parameter estimates

0)

0.444
(3.55)
0.185

(2.75)
0.011

(1.43)
0.038

(1.40)
0.273

(2.32)

a

0.267
(5.17)
0.283

(4.65)
0.128

(3.40)
0.129

(2.71)
0.222

(2.71)

0.212
(1.24)
0.488

(4.83)
0.855

(23.14)
0.820

(12.08)
0.418

(1.94)

AIC

-7.00

-7.01

-6.78

-6.97

-6.91

Diagnostics'

lnL

447.93

461.46

442.99

450.57

456.98

(2.(10)

13.0

7.69

2.59

7.23

4.11

(22(10)

10.1

8.88

7.49

8.70

1.85

Notes:
/-ratio are given in parentheses. Estimation is carried out using our own program written in Gauss.
The model is <p(B)r, = fi + E,\NiO, h,), h, = a) + aej., + /3/i,., where <p{B) is an autoregressive polynomial of orderp
and r, is the weekly observed return series.
•The diagnostics are the Akaike Information Criterion [AIC], which will be used to compare these models with those
in Table III. the LogLikelihood (LnL) calculated for similar reasons, and G,(10) and QjClO), which denote
Box-Pierce test statistics for the significance of residual correlations up to lag 10 in the estimated scaled residuals I /
h,' and the squares of these residuals, respectively. The AIC is calculated so that the model with the smallest AIC
value is preferred.
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Table m. Estimation results of non-linear GARCH models for 1986-9

QGARCH GJR

Index

DAX

EOE

MAD

MIL

VEC

Y
(xlO-')

0.022
(1.82)
0.115

(1.73)
-0.125

(-1.57)
-0.012

(-0.23)
0.199

(2.19)

AIC

-7.00

-7.01

-6.78

-6.97

-6.91

LnL'

450.06

463.86

444.12

450.61

458.07

d

0.482
(4.52)
0.202

(1.85)
-0.104

(-1.05)
-0.023

(-0.32)
0.274

(2.02)

AIC

-7.00

-7.01

-6.78

-6.97

-6.91

LnL

456.20

463.04

443.20

450.42

457.79

Note:
The QGARCH model is given by <f>(B)r, = fi + E,,e,-NiO,h,),h, = (o +a(£,.,-yy +^h,., and the GJR model by
^(B)r, = ft + e,, e, ~ N(0, h,), h, = (t) + aej.f + dD,,t - ej.t + fih,.,, where £>,., =1 when c,.,<=Oand D,.,0 when
e,., »0 , and where 0(fi) is an autoregressive polynomial of order p and r, is the weekly observed retum series.
/-ratios are given in parentheses. Estimation is carried out using our own program written in Gauss.
•See Table n.

OUT-OF-SAMPLE FORECASTING

To evaluate the ability of (non-linear variants of) GARCH models to adequately forecast the
volatility in financial time series, we need a measure of the 'true volatility' As is standard in
related studies on forecasting volatility (see Day and Lewis, 1992; Pagan and Schwert, 1990),
we use the measure w,, defined by

y^',= ir,-ry (4)

where f is the average retum over the last four years of weekly observations. As a measure of
h hd fthe one-step-ahead forecast error «,̂ i we use

«/ + l = H' ,^ l -^ ,^, (5)

where ^,+, is generated using the h, equations in (1), (2) and (3) with the estimates for the
parameters a>, a, fi, y and 6 substituted. To compare the forecasts from the GARCH models
with a naive no-change forecast, we also evaluate the forecast errors for the Random Walk
(RW) model, for which forecasts are given by ^,^, = w,. Notice that we calculate one-step-ahead
forecasts, i.e. we use the estimated models to forecast for / + 1 while the models are calibrated
for four years of observations until and including t.

In Table IV we report the MedSE for the years 1990 to 1994. The results indicate that the
QGARCH model is preferred in 11 of the 25 cases, and that the RW, GARCH and GJR models
are preferred in 12, 2 and 0 cases, respectively. The results for the GJR model suggest that it is
not a useful tool for forecasting. Overall, it seems that RW and QGARCH perform about
equally well.

The forecasts for 1990 and 1991 are based on models which are fitted from estimation
samples which include the 1987 stock market crash observation. From Table IV we notice that
for these two years, the RW model outperforms the other models in 8 of the 10 cases. On the
other hand, when we consider the years 1992, 1993 and 1994. we find that the (JGARCH model
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Table IV. Out-of-sample forecasting performance of ARCH, QGARCH, GJR and random walk models
for the volatility of stock market indices

Index

DAX

EOE

MAD

MIL

VEC

Model

GARCH
QGARCH
GJR
RW

GARCH
QGARCH
GJR
RW

GARCH
QGARCH
GJR
RW

GARCH
QGARCH
GJR
RW

GARCH
QGARCH
GJR
RW

1990

4.395
3.146

178.417
3.566

1.305
1.497

126.656
1.146

3.249
3.298

116.116
1.112

1.130
1.083

21.923
1.173

3.027
3.462

48.520
2.483

1991

3.359
3.322

13.821
0.585

1.050
1.076

61.713
0.148

1.118
1.085

125.261
1.062

2.358
1.943

10.170
1.664

2.396
2.978

218.769
1.104

Forecast period

1992

1.520
1.425
5.585
0.230

0.848
0.707
3.779
0.090

2.717
1.839

23.442
0.859

3.351
2.349

65.221
6.736

3.040
2.279

67.610
2.554

1993

1.775
0.877
6.717
1.013

0.767
0.552
2.545
0.633

2.076
1.008

16.193
1.214

8.895
6.047

71.364
19.851

6.067
5.357
3.497
1.621

1994

2.854
2.780

75.495
3.219

0.928
1.006

11.725
0.983

2.423
1.962

47.612
5.021

8.444
8.479

35.197
10.803

3.098
3.200
4.476
3.103

Note:
As a measure of 'true volatility' we use (r, - r)^, where f is the average return over r - 1,. . . , /-four years.
The models are estimated for samples of four years, where in each new sample the first observation is deleted and the
next observation is included, and one-step ahead forecasts are generated for 1990,..., 1994.
Each cell contains the Median of Squared Errors (x 10'^).

outperforms its rivals in 9 of the 15 cases. Hence, the forecasting performance of the GARCH
type models appear sensitive to extreme within-sample observations.

CONCLUSIONS

Our forecasting results for five weekly stock market indices show that the (JGARCH model can
significantly improve on the linear GARCH model and the no-change forecasting model, in
cases when the forecasting models are calibrated on data which exclude such extreme events as
the 1987 stock market crash. The GJR model, on the other hand, cannot be recommended.
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