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A b s t r a c t  

The pervasive intraday periodicity in the return volatility in foreign exchange and equity 
markets is shown to have a strong impact on the dynamic properties of high frequency 
returns. Only by taking account of this strong intraday periodicity is it possible to uncover 
the complex intraday volatility dynamics that exists both within and across different 
financial markets. The explicit periodic modeling procedure developed here provides such a 
framework and thus sets the stage for a formal integration of standard volatility models with 
market microstructure variables to allow for a more comprehensive empirical investigation 
of the fundamental determinants behind the volatility clustering phenomenon. © 1997 
Elsevier Science B.V. 
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1. I n t r o d u c t i o n  

It is widely documented that return volatility varies systematically over the 
trading day and that this pattern is highly correlated with the intraday variation of 
trading volume and b i d - a s k  spreads. Indeed, these strikingly regular patterns of  
market  activity measures have provided the impetus for much theoretical work. On 
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the other hand, the dynamics of the intraday return volatility process is mostly 
ignored in the empirical market  microstructure literature. This is quite surprising 
given the notion that news arrivals and the resolution of  their informational impact 
are intimately related to the dynamics of the return volatility process 1. We 
conjecture that the intraday return dynamics is neglected primarily because 
standard time series models of volatility have proven inadequate when applied to 
high frequency returns data. In fact, previous results reported in the literature are 
often contradictory and generally defy theoretical predictions. Consequently, there 
is no well established paradigm for intraday volatility modeling, and at present its 
inclusion in market microstructure research is tenuous. 

In this paper we demonstrate that the difficulties encountered by standard 
volatility models arise largely from the aforementioned systematic patterns in 
average volatility across the trading day. We further show how practical estimation 
and extraction of  the intraday periodic component  of return volatility is both 
feasible and indispensable for meaningful intraday dynamic analysis. Particular 
attention is paid to the differing impact of  the periodic pattern on the dynamic 
return features at the various intraday frequencies. To illustrate the range of 
applicabil i ty of  the developed procedures, the analysis is conducted in parallel for 
two different asset classes traded under widely different market structures, namely 
the over-the-counter foreign exchange interbank market  and an organized ex- 
change for futures equity index contracts. Moreover,  to bring out the distinct 
character of  the intraday returns process, the findings are contrasted to the 
corresponding features of  interdaily returns series for the identical assets. 

The empirical  evidence on the properties of  average intraday stock returns dates 
back to, at least, Wood  et al. (1985) and Harris (1986a) who document the 
existence of a distinct U-shaped pattern in return volatility over the trading day i.e. 
volatility is high at the open and close of trading and low in the middle of  the day. 
The existence of equally pronounced intraday patterns in foreign exchange mar- 
kets has been demonstrated by Miiller et al. (1990) and Baillie and Bollerslev 
(1991) 2 

Meanwhile,  a separate time series oriented literature has modeled the dynamics 
of the intraday return volatili ty directly, building on the ARCH methodology of  

1 For example, theoretical work stress issues such as the process of price discovery, the optimal 
timing of trades designed to limit price impact, the differing price response to public versus private 
information, the clustering of discretionary liquidity trading and the associated increase in market depth 
when private information is short-lived and the particular market dynamics associated with periodic 
market openings and closures. 

2 Empirical work continues to refine and classify the regularities of high frequency returns in this 
dimension. Recent studies include Barclay et al. (1990) and Harvey and Huang (1991) on return 
variances over trading versus non-trading periods, Lockwood and Linn (1990) on overnight and 
intraday return volatility and Ederington and Lee (1993) on the impact of macroeconomic announce- 
ments on inter- and intraday return volatility. 
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Engle (1982). Most of  these studies fall into one of  three categories. Firstly, some 
authors investigate the interrelation between returns in geographically separated 
financial markets that trade sequentially, with a focus on the transmission of  
information as measured by the degree of spil l-over in the mean returns a n d / o r  
volatili ty from one market  to the next 3. A second strand of  this literature is 
concerned with the l ead - l ag  relations between two or more markets that trade 
simultaneously 4. Finally, a third group of  papers explores the role of  information 
flow and other microstructure variables as determinants of  intraday return volatil- 
ity 5 

Direct comparison of  these intraday volatili ty studies is complicated by the 
different sampling frequencies employed.  Nonetheless, as noted by Ghose and 
Kroner (1994) and Guil laume (1994), the results regarding the implied degree of  
volatility persistence appear puzzling and in stark conflict with the aggregation 
results for ARCH models developed by Nelson (1990, 1992), Drost and Nijman 
(1993) and Drost and Werker  (1996). One potential explanation is that these 
theoretical predictions about the relationship between parameter  estimates at 
different sampling frequencies do not generally apply in the face of strong intraday 
periodicity,  a fact that has gone largely unnoticed. The most comprehensive prior 
attempt at direct modeling of  this intraday heteroskedastic pattern in returns is 
provided by a series of  papers by the research group at Olsen and Associates on 
the foreign exchange market e.g. Miiller et al. (1990, 1993) and Dacorogna et al. 
(1993). They apply time invariant polynomial  approximations to the activity in the 
distinct geographical  regions of  the market  over the 24-hour trading cycle 6 
Although this might be a reasonable assumption for the foreign exchange market, 
we propose an alternative and more general methodology that allows the shape of  
the periodic pattern to also depend on the current overall  level of  return volatility. 
This feature makes the procedure readily applicable to the analysis of high 
frequency financial data in general and turns out to be essential for our investiga- 
tion of  the stock market. While  our approach accounts for the pronounced intraday 
patterns, we explicit ly do not make any attempts to correct for the lower frequency 
interdaily patterns that also exist e.g. day-of- the-week and holiday effects which 

3 Examples of early contributions are Engle et al, (1990) for foreign exchange markets and Hamao et 
al. (1990) for various national equity index returns. 

4 See for example Baillie and Bollerslev (1991) and Chan et al. (1991). 
5 This literature is exemplified by Bollerslev and Domowitz (1993), Locke and Sayers (1993), Laux 

and Ng (1993), Foster and Viswanathan (1995) and Goodhart et al. (1993). This research is partially 
motivated by an attempt to identify the economic origins of the volatility clustering phenomenon as 
motivated by the mixture of distributions hypothesis; see for example Clark (1973), Tauchen and Pitts 
(1983), Harris (1986b, 1987), Gallant et al. (1991), Ross (1989) and Andersen (1994, 1996). 

6 One may note that the de-volatilization procedure proposed by Zhou (1992) implicitly adjusts for 
the intraday periodicity in the adaptive calculation of the volatility increments from tick-by-tick 
observations. Along similar lines, the notion of time deformation in modeling time varying volatility in 
financial markets has recently been advocated by Ghysels and Jasiak (1994). 



118 T.G. Andersen, T. Bollerslev /Journal of Empirical Finance 4 (1997) 115-158 

are most certainly present in both of the data sets analyzed here. These inter-daily 
features are clearly less significant and not critical for the high frequency analysis 
pursued here. Yet, in analyses of longer run phenomena, accounting for these 
effects may be equally important and could in principle be incorporated along the 
same lines. 

The remainder of the paper is organized as follows. Section 2 describes our 
data and summarizes the intraday average return patterns. Section 3 contains an 
analysis of the correlation structure of both raw and absolute 5-minute returns, as 
well as a comparison to the corresponding properties of the two daily time series. 
The impact of periodic heteroskedasticity on the 5-minute correlations is strong, 
while the evidence of standard conditional heteroskedasticity, although evident at 
the daily level, appears weak at many intraday frequencies. This motivates our 
simple model of intraday returns that renders formal assessments of the relation 
between the intra- and interdaily correlation patterns feasible. Section 4 investi- 
gates the properties of temporally aggregated intraday returns. Estimates of the 
degree of volatility persistence at the various sampling frequencies are contrasted 
to the theoretical aggregation results. Our estimation strategy for characterizing the 
intraday periodicity is presented in Section 5. A relatively simple model that 
allows for a direct interaction between the level of the daily volatility and the 
shape of the intradaily pattern provides a close fit to the average intradaily 
volatility patterns for both return series, with the interaction effect being less 
significant for the foreign exchange market. The corresponding time series proper- 
ties of the filtered returns obtained by extracting the estimated volatility patterns 
from the raw series is also explored. Estimation results for these returns are much 
more in line with the theoretical predictions. Moreover, this analysis strongly 
suggests that several distinct component processes affect the volatility dynamics. 
This finding may help shed new light on the long-memory feature in low 
frequency return volatility documented by a number of recent studies. Section 6 
contains concluding remarks. Details regarding the construction of the 5-minute 
foreign exchange and equity returns employed throughout and the flexible non- 
parametric procedure used in the estimation of the intraday periodicity are 
contained in the appendices. 

2. Intraday return periodicity 

Our primary data set consists of 5-minute returns for the Deutschemark-U.S.$ 
(DM-$)  exchange rate from October 1, 1992 through September 30, 1993, 
comprising 74,880 observations, and the Standard and Poor's 500 (S&P 500) 
composite stock index futures contract from January 2, 1986, through December 
31, 1989, consisting of a total of 79,280 observations. A more detailed description 
of the data sources and the calculation of the 5-minute returns is provided in 
Appendix A. In addition, we use two daily time series of 3,649 spot DM-$  
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exchange rates from March 14, 1979 through September 29, 1993 and 9,558 
observations on the S &P 500 cash index from January 2, 1953 through December 
31, 1990 7. All the empirical work is done in parallel, with tables and figures for 
the foreign exchange and equity data labelled 'a '  and 'b ' ,  respectively. 

2.1. The Deutschemark- U.S. dollar foreign exchange data 

The sample mean of the 5-minute Deutschemark appreciation of 0.000175% is 
indistinguishable from zero at standard significance levels given the sample 
standard deviation of 0.047% 8. However, the returns are clearly not normally 
distributed. For example, the sample skewness of 0.367 and the sample kurtosis of 
21.5 are both highly statistically significant 9. At the same time, the maximum and 
minimum 5-minute returns of 1.24% and -0 .637% do not suggest the presence of 
sharp discontinuities in the series. A small negative first order autocorrelation 
coefficient of - 0 . 0 4  provides some support for the hypothesis that foreign 
exchange dealers position their quotes asymmetrically relative to the perceived 
'true market price' as a way to manage their inventory positions, thus causing the 
midpoint of the quoted prices to move around in a fashion similar to the bid-ask 
bounce often observed on organized exchanges 10. A more detailed set of sum- 
mary statistics are available in Andersen and Bollerslev (1994). 

In order to evaluate the intraday periodicity of the returns, Fig. l a plots the 
average sample mean for each 5-minute interval. The average returns are centered 
around zero but numerous violations of the constant 5% confidence band for the 
null of an i.i.d, series occur between 09.00 GMT and 18.00 GMT (interval range 
108 to 216). Allowing for different return sample variances across the day 
produces a more realistic time-varying confidence band that is violated at seem- 
ingly random points in time and at a frequency consistent with the 5% band (13 
violations over 288 intervals). Thus, there appears to be little evidence for any 
systematic D M - $  appreciation or depreciation through the regular trading day 
cycle 11 

7 The initial observation on March 14, 1979 for the exchange rates corresponds to the beginning of 
the EMS. The Standard 90 was replaced by the broader S and P 500 composite index on January 2, 
1953. Also, for reasons discussed below, the estimates for the S and P 500 data exclude the October 
1987 crash period. 

8 Assuming the returns to be uncorrelated, the standard deviation for the mean equals 
0.047/(74,880) ~/2 = 0.000172%. 

9 The standard errors of these statistics in their corresponding asymptotic normal distributions are 
(6//T) 1/2 and ( 2 4 / T )  I/2, or 0.009 and 0.018, respectively (see e.g. Jarque and Bera, 1987). 

J0 The coefficient is small in an economic sense but given the large sample size it is highly 
statistically significant. Bollerslev and Domowitz (1993) also report a negative first order autocorrela- 
tion in 5-minute DM-$ returns over 3 months in 1989, but find the correlation for artificially 
constructed 5-minute pseudo transactions price returns to be positive. 

J l This is counter to Ito and Roley (1987) who found evidence for systematic dollar appreciation 
during the U.S. segment of the market but dollar depreciation during the European trading hours. 
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Fig. I. Intraday average returns, (a) D M - $ ,  (b) S&P 500. 

In contrast, the exchange rate volatility fluctuates dramatically over the daily 
cycle. The average absolute returns over the 5-minute intervals are depicted in Fig. 
2a. It reveals a pronounced difference in the volatility over the day, ranging from a 
low of around 0.01% at 04.00 GMT (interval 48) to a high of around 0.05% at 
15.00 GMT (interval 180) 12. This pattern is closely linked to the cycle of  market 
activity in the various financial centers around the globe. The volatility starts out 
at a relatively high level followed by a slow decay up to around 03.00 GMT 
(interval 36). The strong drop between intervals 40 and 60 corresponds to the 

12 Since the average standard error for the absolute returns is 0.0022%, these differences are highly 
statistically significant. 
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lunch hour in the Tokyo and Hong Kong markets. Activity then picks up during 
the afternoon session in the Far Eastern markets and is further fueled by the 
opening of the European markets around 07.00 GMT (interval 84). The market 
volatility then declines slowly until the European lunch hour at 11.30 GMT 
(interval 138), before it increases sharply during the overlap of afternoon trading 
in Europe and the opening of the U.S. markets around 13.00 GMT, or 7.00 a.m. 
New York (interval 156). After the European markets close volatility declines 
monotonically until trading associated with the Far Eastern markets starts to pick 
up again around 21.00 GMT (interval 252). The robustness of this intraday 
volatility pattern is confirmed by the sub-sample analysis and the sorting of days 
according to volatility levels reported in the more detailed analysis in Andersen 
and Bollerslev (1994), which is also consistent with earlier findings in Wasser- 
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fallen (1989), Miiller et al. (1990), Baillie and Bollerslev (1991) and Dacorogna et 
al. (1993) ~3. Standard summary statistics further verify the overwhelming signifi- 
cance of this intraday volatility pattern. In particular, the first order autocorrelation 
coefficient for the absolute 5-minute returns of pA = 0.309 exceeds the 1 /x /T  
asymptotic standard error by almost a factor of one hundred, while the L jung-Box  
statistic for up to tenth order serial correlation in ]Rt,,,] equals QA(10) = 36,680 J4 

2.2. The standard and poor 's  500 stock index futures data 

The basic features of the 5-minute S &P 500 are qualitatively similar to those of 
the 5-minute D M - $  returns. Perhaps, the most notable difference is that the 
standard deviation for the stock index futures return of 0.104% is more than 
double the value for the foreign exchange market. However, since the overnight 
returns for the S & P  500 are excluded, the average 5-minute standard deviation 
corresponds to active trading on the CME only, whereas the foreign exchange 
returns cover the entire 24-hour trading cycle and therefore include periods of 
relatively slow activity. Even so, when judged by auxiliary statistics such as the 
sample minimum and maximum of 2.22% and - 2 . 7 6 % ,  the equity market 
exhibits the more volatile returns. Another distinguishing feature is the virtual 
absence of autocorrelation in the futures returns. Although the first ten autocorrela- 
tion coefficients are highly significant, the coefficients are economically small and 
have unpredictable signs ~5. This lack of correlation contrasts sharply with results 
reported by most studies on the intraday S & P  500 cash market, where non-syn- 
chronous trading effects imply that stale prices may enter the calculation of the 
index (see e.g. Chart et al., 1991) 16 

The intraday periodic patterns over the eighty 5-minute intraday intervals are 
depicted in Fig. lb  and Fig. 2b. Apart from the positive returns over the initial 
5-minute interval from 8.35 to 8.40 a.m. and towards the end of the trading day, 

~3 We follow Dacorogna et al. (1993) in using GMT time scale throughout our analysis. Daylight 
savings time is observed in Europe and North America, but not in East Asia. From the sub-sample 
analysis in Andersen and Bollerslev (1994) this gives rise to a one hour difference in the peaks 
associated with the regular release of U.S. macroeconomic announcements at 08.30 a.m. corresponding 
to interval 162 for winter time and interval 150 for summer time. Ederington and Lee (1993) and 
Harvey and Huang (1991) also suggest that macroeconomic announcement effects have a distinct 
impact on the average volatility in early Friday morning trading in the U.S. segment of the market. We 
do not pursue this or any other day-of-the-week effects any further here, however. 

14 The first ten autocorrelations for 4Rt.,,I are 0.309, 0.256, 0.238, 0.214, 0.212, 0.199, 0.204, 0.182, 
0.185 and 0.182. 

15 The first ten autocorrelations of the returns are 0.009, -0.003, -0.009, 0.010, -0.004, 0.018, 
0.009~ 0.015, 0.013 and 0.008, respectively. The corresponding Ljung-Box statistic equals Q(10)= 
87.6. 

16 The impact of non-synchronous trading has been explored extensively in the literature (see e.g. 
Scholes and Williams, 1977; Lo and MacKinlay, 1990). 
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the violations of  the 5% confidence bands for the average returns are dispersed 
unpredictably over the trading day 17. Nonetheless, as was the case for the foreign 
exchange market, the systematic return effects are dwarfed by the systematic 
movements in the return volatility, here documented in Fig. 2b. The average 
absolute returns attain the commonly observed intraday U-shape, starting out at 
0.095% in the morning, followed by a smooth decline to a level of  0.055% around 
noon and a steady rise to 0.105% towards the end of  trading in the cash market. 
The subsequent drop and rise over the last fifteen minutes corresponds to the post 
cash market trading on the CME 18. The robustness of  this intraday periodicity in 
the S & P  500 returns is again underscored by the more detailed analysis in 
Andersen and Bollerslev (1994) in which the full four year sample is divided into 
calendar years as well as four daily volatility categories. The only discernible 
difference across these sub-sample patterns is a tendency for the fight part of  the 
'U '  to occasionally rise above the left part, creating more of  a ' J '  shape. 
Interestingly, this tendency appears to be concentrated on high volatility days. The 
model proposed in Section 5 below explicitly accounts for this phenomenon. 

Several recent studies have attempted to rationalize the pronounced U-shape 
pattern in intraday stock market volatility by strategic interaction of  traders around 
market openings and closures (see e.g. Admati and Pfleiderer, 1988, 1989; Foster 
and Viswanathan, 1990; Son, 1991; Brock and Kleidon, 1992). Even though the 
foreign exchange market operates on a continuous basis, the volatility pattern for 
the D M - $  depicted in Fig. 2a may be viewed, tentatively, as a sum of two 
overlapping U-shapes corresponding to the Far East and European trading hours, 
along with an inverted U-shape for the U.S. segment of  the market. Hence, in spite 
of  obvious differences in market microstructures, the foreign exchange returns are 
calculated from quotes in a 24-hour over-the-counter market while the equity 
returns are obtained from transaction prices on an organized futures market with 
well defined daily closings, the pattern of  intraday periodicity in the two markets 
share important common characteristics. 

3. Characterization and modeling of the correlation structure in intraday 
returns 

3.1, I n t r a d a y  re turn  corre la t ions  

While the intraday volatility patterns documented in the preceding section may 
be irrelevant for standard studies of  the return dynamics based on price observa- 

17 This is related to the findings in Harris (1986a) who reports that the average positive returns in the 
equity markets tend to occur over the first 45 min of the trading day and the very last trade of the day. 
Notice also, that there is no indication of any abnormal positive returns after the cash market is closed. 

18 This U-shaped pattern in the volatility of S&P 500 futures prices following the closure of the cash 
market has also recently been documented by Chang et al. (1995). 
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tions at daily frequencies, conclusions drawn from the recent surge of empirical 
papers on return volatility and market microstructure variables at the intraday 
frequencies are likely subject to severe distortions due to the strong periodicity in 
returns. We therefore supplement the prior investigation of the unconditional 
volatility patterns with an explicit look at the dynamic features of our two return 
series. 

Fig. 3a and b display the sample autocorrelations of the 5-minute returns for up 
to five days i.e. 1440 observations for the foreign exchange and 400 for the equity 
returns. All values are small and beyond the first few lags the series resemble 
realizations of white noise. Thus, we again detect little of interest in the mean 
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Fig. 3. Five days correlogram of intraday returns, (a) D M - $ ,  (b) S&P 500. 
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returns. In contrast, the autocorrelation patterns for the absolute returns are 
strikingly regular. Consider the series for the D M - $  exchange rate in Fig. 4a. The 
strong intraday pattern induces a distorted U-shape in the sample correlogram ~9 
Notice also how the size of  the autocorrelations at the daily frequencies decay 
slowly over the first four days, only to increase slightly at the fifth, or weekly, 
frequency. This signals the presence of  a minor day-of-the-week effect, which we 
ignore in the remainder. Fig. 4b for the S &P  500 futures returns is equally telling. 
The slowly declining U-shape occupies exactly 80 intervals, corresponding to the 
daily frequency. 

3.2. Interpretation in terms o f  a suggestive intraday return model  

The pronounced systematic fluctuations in the return correlogram provide an 
initial indication that direct ARCH modeling of  the intraday return volatility would 
be hazardous. Standard ARCH models imply a geometric decay in the return 
autocorrelation structure and simply cannot accommodate strong regular cyclical 
patterns of  the sort displayed in Fig. 4. Instead, it seems intuitively clear that the 
combination of  recurring cycles at the daily frequency and a slow decay in the 
average autocorrelations may be explained by the joint presence of  the pronounced 
intraday periodicity documented above coupled with the strong daily conditional 
heteroskedasticity 20. The following stylized model provides a simple specification 
of  the interaction between these two components, 

N 1 N 

R,--- E R,,n = E soZ,,n. (1) 
n = l  n = l  

Here, R t denotes the daily continuously compounded return calculated from the N 
uncorrelated intraday return components, Rt, .. The conditional volatility factor for 
day t is denoted by ~r t, while s n refers to a deterministic intraday periodic 
component and Z,, n is an i.i.d, mean zero, unit variance error term assumed to be 
independent of  the daily volatility process, {~rt}. Both volatility components must 
be non-negative i.e. % > 0 a.s. for all t and s, > 0 for all n. The following 
terminology for the normalized, deterministic sample means and covariances for 
the periodic structure will prove convenient: 

1 N 1 N 1 N 

n ~  = =- M (  s)  = 1, -~ E SnSn_i -= M( ssi), -~ E S2 =- M( s2), 
=1 n = l  n = l  

where s,,+j N =- s n for any integer j and 0 < n < N. 

19 A corresponding figure is presented by Dacorogna et al. (1993). However, in their analysis the 
correlations at the daily frequencies are sharply diminished due to a strong weekend effect. By 
excluding weekend returns we have effectively eliminated this distortion. 

20 The temporal variation in daily financial market volatility have been successfully modeled by 
ARCH type processes (see Bollerslev et al. (1992) for a survey of this extensive literature). 
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Fig. 4. Intraday absolute returns, (a) DM-$,  (b) S&P 500. 

In the absence of  intraday periodicity ( s ,  = 1 for all n) the daily returns may be 
represented in the form R t = o',N 1/2Y',,=1,NZt, . ,  where the return component 
N-1/2F, ,=  LNZ,,n is i.i.d, with mean zero and unit variance. Thus, Eq. (1) extends 
the standard volatility model for daily returns to an intraday setting with indepen- 
dent return innovations and deterministic volatility patterns. Of course, this type of  
periodicity is annihilated when the returns are measured at the daily frequency. In 
particular, letting Z, denote an i.i.d, random variable with E(Z t) = 0 and Var(Z t) 
= 1, we have 

R t = M I / 2 (  S 2 ) o ' ,Z , ,  ( 2 )  
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Fig. 4 (continued). 

so that the expected absolute return equals M1/2(s2)~tEIZ, I. Since M1/2($2) > 1, 
the expected daily absolute return is an increasing function of  the fluctuations in 
the intraday periodic pattern. However, this effect is limited to a scale factor. 
Letting c = (EIZ, I) -2 - 1 > 0, it follows that for t 4= ~', 

Cov( o-,, o;_) 
Corr(lRtl ,  ]RTI) = Var(o. t )  + c E ( ~ r t 2 )  " (3) 

Hence, the presence of  periodic components reduces the overall level of  the 
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interdaily return autocorrelations, without affecting the autocorrelation pattern 21 
In contrast, the periodicity may have a strong impact on the autocorrelation pattern 
for the absolute intraday returns. Straightforward calculations reveal 

Corr(IR,,,,I, IR .... I) 

m(ssn_m)COv(o ' t ,  ~-) q- CoV(Sn, Sm)E2(o' t)  

M ( s 2 ) V a r ( % )  + CNE( Crt2)M( s 2) + E2( crr)Var( s) ' 
(4) 

where Var(s) ~ m ( s  2) - M2(s) ,  Cov(sn, s,,) = M(ss,,_,n) - M 2 ( s )  and C N 

E - 2 I Z t , , { -  1. Eq. (4) illustrates the interaction between the periodicity in absolute 
returns at the intradaily level and the conditional heteroskedasticity at the daily 
level. For adjacent trading days the impact of the positive correlation in the daily 
return volatility, captured by Cov(~,, o-T), is strong and induces positive depen- 
dence in the absolute returns, but as the distance between t and ~- grows this effect 
becomes less important which is consistent with the slow decay in the correlo- 
grams in the bottom panels of Fig. 4. At the same time, the correlograms are 
affected by the strong intraday periodicity. For example, consider the display for 
the absolute S&P 500 returns in Fig. 4b. The correlations attain their lowest 
values around lag forty, or half a trading day. This corresponds to the bottom of 
the U-shape for the average absolute returns depicted in Fig. 2b. Clearly, the 
population covariance, Cov(s n, Sm), is minimized and significantly negative, at 
this frequency. Eq. (4) verifies that the negative correlation between the 5-minute 
absolute returns, realized about half-a-day apart, translates into a negative contri- 
bution to the corresponding correlogram at the 3 -4  hour frequencies. Likewise, 
Fig. 2a indicates that there is strong negative correlation between the absolute 
foreign exchange returns in the intervals 80-225 (covering about half-a-day) and 
all the remaining 5-minute returns. Not surprisingly, the lower panel of Fig. 4a 
verifies that this again results in highly significant troughs in the correlogram 
around the 12 hour frequency (and its harmonics). Indeed, the impact is now 
sufficiently strong that the absolute return autocorrelations turn negative. This is 
truly remarkable given the very large positive autocorrelations found at the daily 
frequency and it is testimony to the profound impact of the periodic structure on 
the intraday return dynamics. In terms of the specification in Eq. (4), the size of 
the second, negative, term of the numerator exceeds the first, positive, term around 
the 12 hour frequency. 

21 Consistent with the findings of Granger and Ding (1996), informal investigations reveal that the 
dynamic dependencies are significantly more pronounced for the absolute as opposed to the squared 
sample returns. Consequently, our intraday modeling focuses on the patterns in ]Rt] and ]Rt,,,], rather 
than R 2 and R,2,,,. 
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3.3. Long-run implications and comparison to daily returns 

To further assess the descriptive accuracy of  the formulation in Eq. (1), we now 
investigate the long-run implications for the correlogram. It is convenient to focus 
on the daily frequency i.e. n = m, 

C o v ( ~ ,  a'~) + ( V a r ( s ) / M ( s 2 ) ) E 2 ( o - , )  

Corr( IRt , . I ,  IR . , . I )  = Var(~rt )  + CNE( O't 2) Jr- (Var( s) / M (  s2) )E2( o',) " 
(5) 

Fig. 5a and b display the first forty autocorrelations for the absolute returns of  the 
two daily t ime series on the D M - $  spot exchange rate and the S & P  500 cash 

(a) o.zo . . . . . . . . . . . . . . . . . . .  
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Fig. 5. Forty days correlogram of absolute returns, (a) DM-$, (b) S&P 500. 
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index, along with the corresponding 5-minute intraday autocorrelations out to lag 
11,520 and 3,200, respectively 22. Direct comparison between the empirically 
estimated Corr(IRtl, IR~I) in Eq. (3) and the expression for Corr(lR,,nl, IR,,,[) 
above are complicated by the different sample periods required for reliable 
inference. Nonetheless, it is clear that the decay rate in the local maxima of the 
intradaily absolute correlogram and the daily return autocorrelations should be 
qualitatively comparable, as the Cov(%, o- 7) term governs both. Comparing the 
peaks in the intraday correlograms to the daily autocorrelations in Fig. 5a and b 
confirms this implication of our stylized model; the dominant rate of decay is 
strikingly similar for both markets ,_3 

The findings in this section demonstrate a strong correspondence between the 
qualitative implications of the model outlined in Eq. (1) and the stylized empirical 
facts. It suggests that our model, stressing the conditional heteroskedasticity at the 
daily level along with the strong deterministic periodicity at the intradaily level, 
may serve as a good starting point for high frequency volatility modeling and as 
such it constitutes the basis for the subsequent analysis in Section 5. 

4. Implications for volatility modeling and high frequency return aggregation 

Section 3 demonstrates that the distinct intraday periodicity has a strong impact 
on the autocorrelation patterns of the 5-minute returns. The question therefore 
arises whether more formal time series modeling of return volatility is similarly 
affected by the presence of periodic features, and if so, whether some observation 
intervals are preferable relative to others for the purpose of drawing inference 
concerning the dynamic features of interest. In order to address these issues this 
section presents an extensive analysis of the properties of the return series 
obtained at a range of different intradaily and interdaily frequencies. 

4.1. Characterization of  the intraday returns at the various frequencies 

Summary statistics for the foreign exchange market are provided in Table la 
for all seventeen possible intraday returns with a 24-hour periodicity. The returns 
are continuously compounded i.e. the nth return on day t for the series at 
(k .  5)-minute intervals is defined by Rtk, -- 52i=~n_ l)k+ l.nkRt,i, t = 1, 2 . . . . .  260, 

22 The sample autocorrelations are generally negatively biased and become less precise as the lag 
length grows; see Percival (1993) who point out that the sum of all the sample autocorrelations by 
construction equals zero. We therefore limit our analysis to lag-lengths which may appear large, but 
nonetheless constitute a modest fraction of the total intraday sample. 

23 The slow rate of decay in the autocorrelation functions is also in accordance with the apparent 
long-memory feature of asset return volatility documented by a number of recent studies (see e.g. 
Baillie et al., 1996; Ding et al., 1993). 
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n = 1, 2 . . . . .  K where K -  2 8 8 / k  refers to the number of  returns per day. Note 
that while the 5-minute return series consists of  74,880 observations, the hourly 
series contains only 6,240 observations and the 1 / 2 - d a y  return series has a mere 
520 observations. These differences should be kept in mind when interpreting the 
evidence. 

The standard deviations in Table l a grow at a rate almost proportional to the 
square root of  the sampling frequency. This is consistent with the 5-minute returns 
being approximately uncorrelated, although there is a small, but highly significant, 
negative first order autocorrelation coefficients at the higher frequencies. As 
mentioned, the weak negative correlation may be the result of  spread positioning 
by dealers causing mean reversion in the quote midpoints; an effect similar to a 
b i d - a s k  bounce in transactions data 24. In line with this explanation, the pj 
coefficients generally turn insignificant at the 40-minute and lower frequencies. 
Further corroborating evidence along these lines is provided by the variance ratio 
statistics, 

v R  = x .  VarT(R ,n) 
k ' Varr  (Eft= iRt,n) (6)  

where V a r r ( R ~ , )  and Varr(~2,=l,  k k R,, n) denote the sample variances for the 
intraday and daily returns, respectively. Expanding the daily variance estimate in 
the denominator  demonstrates that a value of  the VR-statistic below unity will 
result from positive autocorrelation between adjacent return components,  while a 
statistic above one is indicative of  predominantly negatively correlated intraday 
returns zs. Finally, it is worth noting from Table la ,  that the kurtosis of  the D M - $  
returns increases almost monotonical ly with the sampling frequency. 

The first order autocorrelations of  the absolute returns, pA are, not surprisingly, 
all highly significant for the shorter intervals. However,  beyond the 2-hour 
sampling frequency the autocorrelations drop off  very sharply and in fact turn 
negative at the 8 and 12 hourly frequencies (k  = 96, 144). This is, of  course, 
consistent with the negative region of  the 5-minute absolute return correlogram in 
Fig. 4a. The VRA-statistic reported in the final column of  Table la  is calculated by 
replacing Rtk,. with ]R~,.] in the definition of  VR in Eq. (6) 26 The statistic starts 
out at 0.05 for the 5-minute returns and rises almost monotonical ly to 0.69 for the 

24 Note that the standard deviation of the 5-minute returns is less than the average quoted bid-ask 
spread. According to Bollerslev and Melvin (1994), more than half of the DM-$ quotes are posted 
with a spread of 0.10%, while the second most common and lowest regularly posted spread of 0.05% 
accounts for about a quarter of the quotations. 

25 Formal tests for serial correlation based on the VR-statistic may be calculated as outlined in Lo and 
MacKinlay (1989). 

26 Note that the denominator in this VRA-statistic involves the variance of the sum of the absolute 
returns rather than the absolute value of the sum of the returns. The expected value of the VR-statistic 
would not equal unity under the latter definition. 
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k T / k  Mean St. Dev. Skew. Kurtosis Pl Q(10) VR pA QA(10) VR a 

(a) Summary statistics for intraday DM-$ exchange rate 
l 74,880 0.018 0.047 0.368 21.5 -0.040 281 1 . 1 9 4  0.309 36,680 0.054 
2 37,440 0.035 0.066 0.363 1 6 . 6  -0.070 263 1 . 1 6 2  0.313 17,563 0.071 
3 24,960 0.053 0.079 0.200 1 3 . 6  -0.089 220 1 . 1 1 8  0.307 10,710 0.086 
4 18,720 0.070 0.089 0.276 1 4 . 0  -0.082 154 1.084 0.287 6,296 0.099 
6 12,480 0.105 0.107 0.534 1 2 . 6  -0.043 36.5 1 .023  0.268 2,757 0.127 
8 9,360 0.140 0.121 0.135 9 . 1 1  -0.023 22.0 0.994 0.272 1,736 0.149 
9 8,320 0.158 0.126 0.345 10.1 0.002 18 .9  0.948 0.251 1,212 0.161 

12 6,240 0.210 0.148 0.326 1 1 . 0  -0.001 12.7 0.978 0.229 609 0.193 
16 4,680 0.280 0.170 0.318 8.77 0.032 13.1 0.968 0.246 425 0.235 
18 4,160 0.315 0.178 0.489 10.6 0.058 21.9 0.947 0.193 219 0.260 
24 3,120 0.420 0.212 0.166 8.94 0.011 16.7 1 .012  0.164 159 0.311 
32 2,340 0.560 0.246 0.326 9.15 0.018 43.3 1 .018  0.171 238 0.373 
36 2,080 0.630 0.253 0.329 7.89 0.047 37.7 0.954 0.097 109 0.416 
48 1,560 0.840 0.300 0.400 5.92 0.002 30.5 1 .007  0.075 66.6 0.487 
72 1,040 1.261 0.373 0.319 6.59 -0.019 20.6 1 .042  0.007 67.60.679 
96 780 1.681 0.423 0.389 5.19 -0.022 18 .2  1.004 -0.025 53.20.653 

144 520 2.521 0.520 0.192 4 . 3 1  -(l.021 12.2 1.012 -0.033 28.2 0.692 

(b) Summary statistics for intraday S&P 500 returns 
1 79,280 0.064 0.104 -0.597 29.3 0.009 87.6 0.774 0.292 32,425 0.099 
2 39,640 0.128 0.150 -1.212 30.9 -0.009 81.5 0 .801  0.285 12,641 0.128 
4 19,820 0.255 0.212 - l . 609  33.2 0.014 53.4 0.795 0.232 3,374 0.179 
5 15,856 0.319 0.234 -1.755 33.3 0.032 60.6 0.780 0.243 2,323 0.205 
8 9,910 0.511 0.299 -1.478 22.2 0.047 44.6 0.793 0.207 1 ,295 0.261 

10 7,928 0.638 0.339 -1.417 21.2 0.039 41.7 0.819 0.211 973 0.300 
16 4,955 1.021 0.437 -1.803 26.6 0.040 35.2 0.849 0.135 437 0.405 
20 3,964 1.277 0.499 -1.869 27.4 0.016 24.4 0.884 0.114 268 0.463 
40 1,982 2.553 0.728 -1.541 16.2 0.026 22.6 0.942 0.148 175 0.673 

12 h o u r l y  re turns .  T h e  resu l t s  for  the mu l t ip l e  day  re tu rns  repor ted  in A n d e r s e n  

and  Bo l l e r s l ev  (1994)  c o n t i n u e  this  nea r  m o n o t o n e  ascent ,  r e a c h i n g  1.94 for  the  

b i w e e k l y  s a m p l i n g  interval .  T h e  s m o o t h  inc rease  s u g g e s t s  tha t  a c o m m o n  c o m p o -  

n en t  a c c o u n t s  for  a subs tan t i a l  par t  o f  the  pos i t ive  h i g h e r  order  d e p e n d e n c e  in all 

o f  the  re turn  ser ies .  T h e  c o r r e s p o n d i n g  p s ta t i s t ics  o f  0 .123 and  0 .118 for  the  

w e e k l y  and  b i w e e k l y  s a m p l i n g  f r e q u e n c i e s  a lso  tes t i fy  to the i m p o r t a n c e  o f  the  

in t e rday  he t e ro skedas t i c i t y  27 

27 Hence, A the VR -statistics convey a coherent message about the degree of conditional heteroskedas- 
ticity in the series. As a set of simple diagnostics, these statistics may therefore be more informative 
about the nature of the volatility process than the standard Ljung-Box statistics for tenth order serial 
correlation in the absolute returns, Q~'(IO), which appear both erratic and highly dependent on the 
sample size. 



T. G. Andersen, T. Bollerslez: / Journal of Empirical Finance 4 (1997) 115-158 133 

The  s u m m a r y  s tat is t ics  for  the  S & P  500  index  fu tures  re tu rns  in Tab le  l b  

la rge ly  para l le l  those  for  the  D M - $  re turns .  H o w e v e r ,  in con t ras t  to the  resul ts  for  

the  e x c h a n g e  rates ,  the  f i rs t  o rde r  au toco r re l a t i ons  and  the  VR-s t a t i s t i c s  in Tab le  

l b  all ind ica te  a s l ight  pos i t ive  in t raday  dependence .  M o r e o v e r ,  the  equ i ty  re tu rns  

are nega t ive ly  s k e w e d  and  d isp lay  very  s ign i f i can t  excess  kur tos i s  28. F ina l ly ,  the  

in t r aday  re tu rn  per iodic i ty ,  here  dep ic ted  in Fig. 2b, aga in  h a v e  a s t rong ef fec t  on 

the cor re la t ions  for  the  abso lu te  in t raday  re turns ,  a l t h o u g h  the  decay  in the  pA 

coef f i c ien t s  for  the  l ower  f r equenc i e s  is less p r o n o u n c e d  than  for  the e x c h a n g e  

rates.  

4.2. Specification o f  the uolatili~ model and the associated persistence measures 

N u m e r o u s  r ecen t  s tudies  h a v e  re l i ed  on  m o r e  fo rma l  t ime  ser ies  t e chn iques  in 

the  ana lys i s  o f  h i g h  f r e q u e n c y  re tu rn  d y n a m i c s  bo th  wi th in  and  across  d i f fe ren t  

marke t s .  T h e  m o s t  c o m m o n l y  e m p l o y e d  f o r m u l a t i o n  is the  G A R C H ( 1 ,  1) mode l  

p r o p o s e d  i n d e p e n d e n t l y  by  Bo l l e r s l ev  (1986)  and  T a y l o r  (1986) .  Thus ,  in o rder  to 

eva lua t e  the  po ten t i a l  i m p a c t  o f  the  s t rong in t raday  per iod ic i ty  in this  con tex t  we 

Notes to Table l: 
(a) The percentage returns are based on interpolated 5-minute logarithmic average bid-ask quotes for 
the Deutschemark-U.S. dollar spot exchange rate from October 1, 1992 through September 29, 1993. 
Quotes from Friday 21.00 Greenwich mean time (GMT) through Sunday 21.00 GMT have been 
excluded, resulting in a total of 74,880 return observations. The length of the different intraday return 
sampling intervals equals 5-k minutes. Each time series has a total of T/k  non-overlapping return 
observations. The sample means have been multiplied by one hundred. The columns indicated by Pl 
and pA give the first order autocorrelations for the returns and the absolute returns. The Ljung and Box 
(1978) portmanteau test for up to tenth order serial correlation in the returns and the absolute returns 
are denoted by Q(10) and QA(I0), respectively. The variance ratio's for the different sampling 
frequencies versus the daily return variance are denoted by VR. The corresponding variance ratio 
statistics for the absolute returns are given in the VR A column. 
(b) The returns are based on 79,280 interpolated 5-minute futures transactions prices for the Standard 
and Poor's 500 composite index. The sample period ranges from January 2, 1986 through December 
31, 1989, excluding the period from October 15, 1987 through November 13, 1987. Overnight five 
minute returns have also been deleted, resulting in a total of 80 intraday return observations from 08.35 
through 15.15 for each of the 991 days in the sample. The length of the different intraday return 
sampling intervals equals 5.k minutes. Each time series has a total of T / k  non-overlapping return 
observations. The sample means have been multiplied by one hundred. The columns indicated by p~ 
and pA give the first order autocorrelations for the returns and the absolute returns. The Ljung and Box 
(1978) portmanteau test for up to tenth order serial correlation in the returns and the absolute returns 
are denoted by Q(10) and QA(10), respectively. The variance ratio's for the different sampling 
frequencies versus the daily return variance are denoted by VR. The corresponding variance ratio 
statistics for the absolute returns are given in the VR A column. 

2s The negative skewness may be interpreted as evidence of the so-called 'leverage' and/or 
'volatility feed-back' effects discussed by Black (1976), Christie (1982) and Nelson (1991), and 
Campbell and Hentschel (1992), respectively. 
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present MA(1) -GARCH(1 ,  1) estimation results for each of the intradaily sam- 
pling frequencies in Table 2a and b. Formally, the model is defined by 

R~,~ = tx(h ) + O(k)etk,,_ 1 + ek t , n ~  

and 

where E,,~_ l(e,~..)= 0 and Et, ~_ l[(e~.)  2 ] = (o-~k.) 2 denotes the conditional return 
variance over the subsequent intraday period, with the subscript (t, 0) defined to 
equal (t - 1, K). The reported parameter estimates for a(k ) and fl(k) are obtained 

Table 2 

k T / k  o~(k ~ tick) a~k) + tick) Half life Mean lag Median lag 

(a) Persistence of MA(1)-GARCH(I,  1) models for intraday D M - $  exchange rate 
k _ 

R t , n  = 1 0 0 " ~ i = ( n  1 ) k + l , n k R t , i  = I't'(k) + OIk)Etk, n I 
+ , k  (o.,~o)2 = ,o~k~ k 2 k ) 2  +a(k~(et.,,_ j) +fl~k)(o't,n_l t = l , 2 ,  . . . , 2 6 0 ,  n = 1 , 2 ,  . . . , 2 8 8 / k  
1 74,880 0.193 (0.0l 1) 0.822 (0.009) 1.015 ~ ~ w 
2 37,440 0.229 (0.012) 0.774 (0.008) 1.003 ~ co 
3 24,960 0.273 (0.018) 0.708 (0.014) 0.981 533 725 488 
4 18,720 0.287 (0.019) 0.677 (0.016) 0.964 375 488 320 
6 12,480 0.322 (0.035) 0.579 (0.033) 0.901 200 233 138 
8 9,360 0.286 (0.028) 0.581 (0.037) 0.868 195 207 108 
9 8,320 0.306 (0.035) 0.521 (0.042) 0.828 165 167 81 

12 6,240 0.311 (0.047) 0.395 (0.069) 0.706 119 105 35 
16 4,680 0.261 (0.039) 0.456 (0.074) 0.718 167 136 < 40 
18 4,160 0.270 (0.061) 0.246 (0.124) 0.516 94 67 < 45 
24 3,120 0.018 (0.015) 0.969 (0.026) 0.988 6,771 5,919 1,878 
32 2,340 0.016 (0.008) 0.975 (0.013) 0.991 12,159 11,219 4,318 
36 2,080 0.011 (0.004) 0.978 (0.005) 0.989 11,311 8,293 266 
48 1,560 0.011 (0.004) 0.979 (0.005) 0.990 17,084 13,229 1,748 
72 1,040 0.007 (0.005) 0.987 (0.004) 0.987 19,585 10,153 < 180 
96 780 0.014 (0.008) 0.969 (0.007) 0.983 19,637 13,202 < 240 

144 520 0.010 (0.010) 0.960 (0.007) 0.970 16,329 5,988 < 360 

(b) Persistence of MA(1)-GARCH(I,  1) models for intraday S&P 500 returns 
k __ k 

R t , n  = 1 0 0 " ~ i = ( n  I ) k +  1 , n k R t , i  = t~(k)  4- O(k)~'t,n 1 
k k 2 k 2 4- k 4-e,., (°'t,n)--w(k)+°l(k)(et.n 1) /3~k~(o't,,_l)2, t = l , 2  . . . . .  991, n = 1 , 2  . . . . .  80 /k  

1 79,280 0.137 (0.004) 0.838 (0.005) 0.975 137 168 105 
2 39,640 0.180 (0.010) 0.765 (0.011) 0.945 121 138 79 
4 19,820 0.223 (0.024) 0.664 (0.036) 0.887 116 118 57 
5 15,856 0.230(0.067) 0.630(0.123) 0.861 116 112 49 
8 9,910 0.053 (0.027) 0.935 (0.036) 0.988 2,213 2,602 1,559 

10 7,928 0.048 (0.018) 0.940 (0.023) 0.988 2,947 3,437 2,043 
16 4,955 0.148 (0.333) 0.764 (0.694) 0.912 606 575 240 
20 3,964 0.060 (0.049) 0.890 (0.092) 0.951 1,376 1,124 246 
40 1,982 0.108 (0.158) 0.798 (0.315) 0.906 1,397 1,128 228 



T.G. Andersen, T. Bollerslev / Journal of Empirical Finance 4 (1997) 115-158 135 

by quasi-maximum likelihood methods assuming the innovations to be condition- 
ally normally distributed. The corresponding robust standard errors for the esti- 
mates are provided in parentheses (see Bollerslev and Wooldridge, 1992). We note 
that, although it usually represents a reasonable approximation, the GARCH(1, 1) 
model is not necessarily the preferred specification for the return generating 
process in all, or even most, instances. However, estimating the same model across 
both asset classes and all return frequencies facilitates meaningful comparisons of 
the findings. Moreover, it corresponds to the class of models for which theoretical 
aggregation results are available. The MA(1) term is included to account for the 
economically minor, but occasionally highly statistically significant, first order 
autocorrelation in the returns. 

Unfortunately, an unambiguous characterization of the estimated volatility 
dynamics and the associated persistence properties is not possible in this non-lin- 
ear setting (see Bollerslev and Engle (1993), Bollerslev et al. (1994) and Gallant et 
al. (1993) for further discussion of these issues). Hence, we supplement the 
parameter estimates for a(k ) and /3~k ) in Table 2a and b with three additional 
summary measures for the implied degree of volatility persistence. In particular, if 
a(~) +/3(k ) < 1, the j-step ahead prediction for the conditional variance may be 
written as 

k 2 j ~ 2 

where 0 -2 - o~(k)(1 - a(k >- /3(~)  -~ equals the unconditional variance of the 

Notes to Table 2: 
(a) The returns are based on 288 interpolated five minute logarithmic average bid-ask quotes for the 
Deutschemark-U.S. dollar spot exchange rate from October 1, 1992 through September 29, 1993. 
Quotes from Friday 21.00 Greenwich mean time (GMT) through Sunday 21.00 GMT have been 
excluded, resulting in a total of 74,880 return observations. The length of the different intraday retum 
sampling intervals equal 5. k minutes. The model estimates are based on T~ k non-overlapping return 
observations. The ot(k ) and /3~k ) columns give the Gaussian quasi-maximum likelihood estimates for 
the GARCH(1, 1) parameters. Robust standard errors are reported in parentheses. The half life of a 
shock to the conditional variance at frequency k is calculated as - log(2) / log(a~k)+/3tk  )) and 
converted into minutes. The mean lag of a shock to the conditional variance is given by a(k ) +/3ck ) > 1. 
The median lag of a shock to the conditional variance is calculated by ½ +[log(l - /3 (k~) -  1og)a(k))-- 
log(2)]/1og(a(k ) + /3(k )) and reported in number of minutes. For 2a~k ) < 1 -/3(k ) the median lag is 
less than ½. The median lag is also not defined for a(t) +/3(k ~ > 1. 
(b) The returns are based on 79,280 interpolated five minute futures transactions prices for the Standard 
and Poor's 500 composite index. The sample period ranges from January 2, 1986 through December 
31, 1989, excluding the period from October 15, 1987 through November 13, 1987. Overnight five 
minute returns have also been deleted, resulting in a total of 80 intraday return observations from 08.35 
through 15.15 for each of the 991 days in the sample. The length of the different intraday return 
sampling intervals equal 5. k minutes. The model estimates are based on T / k  non-overlapping return 
observations. The ~(k) and /3(k ) columns give the Gaussian quasi-maximum likelihood estimates for 
the GARCH(I, 1) parameters. See (a) for the definition of the half life, mean lag and median lag 
statistics. 
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return innovations. The 'half-life' of  the volatility process is then defined as the 
number of  time periods it takes for half of  the expected reversion back towards or 2 
to occur i.e. - l o g ( 2 ) . l o g ( a ( k  ) +/3(k )) i. Alternatively, by defining the condi- 
tional heteroskedastic squared return innovations, v ~ , , - ( ~ n ) 2 - ( ~ , )  2, the 
GARCH(1 1) model may be expressed as an infinite MA model for (E k )2 with , t , n  

positive coefficients, 0~ k, 

E k = 0 " 2 " ~  o / . ( k ) E ( o g ( k ) q - [ ~ ( k ) )  i l p  k q_ 1) k ~ 0-2--}- E o k p  k 
t ,n t , n -  i t ,n t t ,n t " 

i = 1  i = 0  

This specification suggests the corresponding 'mean lag', a(~)(1 - o~(~- 2/3~k ) + 
oe(k )/3(k ) +/3(k)) i and 'median lag', ½ + [log(1 -/3(k ~) - log(oe(k )) - log(2)] • 
log(a(k ) +/3(k~) -1 , as additional measures for characterizing the degree of  volatil- 
ity persistence and the duration of the dynamic adjustment process in squared 
returns across the different sampling frequencies 29 Neither the mean nor the 
median lag is defined for ce(k ) +/3~k ~ > 1. Also, the median lag is less than 1 / 2  for 
2a(~) +/3(k ) < 1. 

4.3. Interpretation o f  the GARCH results .for different return frequencies 

This section summarizes the evidence from fitting standard GARCH models to 
the return series at different frequencies. Particular emphasis is placed on the type 
of  distortions that may be induced by the strong periodic intraday patterns which 
are ignored in these models. There are a couple of indirect ways to gauge the 
effect. First, there are theoretical predictions about the relation between the 
parameters at various frequencies. If these are most obviously violated at the 
particular frequencies where the intraday periodicity are expected to assert the 
maximal impact, this is therefore consistent with the periodic pattern being a 
dominant source of  misspecification for these models. Second, to the extent that 
the periodic pattern is a strictly deterministic intraday phenomenon as suggested in 
Section 3, the distortions should be absent from models estimated at daily or 
multiple-day frequencies. Consequently, if the theoretical aggregation results work 
satisfactorily at the multiple-day frequencies but break down intradaily then this is 
further evidence of  a significant impact of the periodic pattern on the dynamic 
properties of  the intraday volatility process. We also relate our findings to the prior 
estimates reported from intraday volatility modeling. The comparison shows that 
our results are fully consistent with the diverse set of  estimates reported in the 
literature once we control for the different return frequencies employed in the 
studies. Finally, the explicit incorporation of  the cyclical pattern in Section 5 
verifies that most of  the distortions attributable to the intraday volatility cycle may 

29 The mean lag is given by Ei o.~iOi ~, whereas the median lag, m, is implicitly defined by 
Y~i=0,,,0, k = l/2.E~_a~O ~ (see Harvey, 1981). 
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be eliminated. Hence, our findings apply readily to the majority of  the prior high 
frequency studies in the literature, and, in particular, provide an indication of the 
magnitude of their potential biases due to the neglect of  the intraday periodicity in 
the volatili ty process. 

The M A ( 1 ) - G A R C H ( 1 ,  1) results for the intraday foreign exchange rates are 
given in Table 2a. The implied persistence measures reveal an alarming degree of  
irregularity across the different sampling frequencies. For the longer intraday 
intervals the estimates, converted into minutes, point to half lives around 18,000, 
or about 12½ trading days and mean lags of  around 8 - 9  days. However,  the 

1 I corresponding measures collapse at the intermediate 5 - 1 g  hour frequencies 
(k = 6 -18) ,  becoming less than 4 hours,  only to resurrect again at the lowest, 
5 - 1 0  minute, intervals (k  = 1, 2) where violations of  the a(k / +/3ck ) < 1 inequality 
cause the estimated processes to be covariance nonstationary. 

These intraday results contrast sharply with the findings for the interdaily 
D M - $  returns reported in Table 3a i.e. R=-~r=( t_ l ) k+l , t kR . r ,  t =  1, 2 . . . . .  
[3 ,649/k] ,  k = 1, 2 . . . . .  10 where [ . ]  denotes the integer value. Here, the 
persistence measures appear quite consistent over the different return intervals, 
with the half lives and mean lags fluctuating around 20 and 15 days, respectively 3o 
As for the intraday returns, the median lag is always substantially lower than the 
mean lag and measured with some imprecision resulting in numerous violations of  
the inequality governing the lower bound of  the statistic, particularly for the 
smaller sample sizes. 

A formal f ramework for assessment of  the parameter estimates obtained at the 
various sampling frequencies is available from the results on temporal aggregation 
in ARCH models  provided by Nelson (1990, 1992), Drost and Nijman (1993) and 
Drost and Werker  (1996). Specifically,  assuming that the GARCH(1,  1) model  
serves as a reasonable approximation to the returns process at the daily frequency, 
it follows from Drost and Nijman (1993) that the estimates for the corresponding 
weak GARCH(1,  1) models at the lower interdaily frequencies should be related to 
the daily parameters via the simple formula a ~ + / 3 ~ k ) = ( C e ~ l ) +  fl~l/) k. This 
implies that the estimated half  lives, when converted to a common unit of  
measurement  as in our tables, should be stable across the frequencies 31. Our 
evidence in Table 3a is in line with this prediction and it is also consistent with 

30 The intraday measures in Table 2a are converted to minutes whereas the interdaily results in Table 
3a are given in days. Furthermore, recall that the weekend returns have been excluded from the 
intraday series. This may induce a distortion in the return dynamics but, again, our informal analysis 
found this effect to be inconsequential. 

3t Note that any serial dependence in the mean will generally increase the order of the implied low 
frequency weak GARCH model beyond that of the high frequency GARCH(1, 1) model (see Drost and 
Nijman (1993) for further details). However, the estimate for the MA(l) term for the daily DM-$ 
GARCH(I, 1) model is only -0.034 with an asymptotic standard error of 0.018. 
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Table 3 

k [ T / k ]  ot(k ) tick) °~C~) + tick) Half life Mean lag Median lag 

(a) Persistence of MA(I)-GARCH(I,  l) models for daily DM-$ exchange rates 
R k - 100 + k k k 2 t = ")ZT=(~- l)k+ I,tk R-r = tx(k~ O(~et-  I + et ( cr t )  = w(k) 

+ ot(k)(et k_ 1) 2 +/3(k)(o't ~_ 1) 2, t = 1, 2 . . . . .  [ T / k ]  
l 3,649 0.105 (0.015) 0.873 (0.015) 0.978 31.2 37.7 23.2 
2 1,824 0.150 (0.024) 0.784 (0.026) 0.934 20.6 21.4 10.9 
3 1,216 0.106 (0.021) 0.813 (0.037) 0.919 24.8 21.2 6.1 
4 912 0.167 (0.036) 0.713 (0.042) 0.879 21.6 19.2 6.5 
5 729 0.182 (0.049) 0.611 (0.081) 0.794 15.0 11.4 < 2.5 
6 608 0.19l (0.049) 0.646 (0.060) 0.838 23.5 20.9 5.6 
7 521 0.129 (0.049) 0.674 (0.071) 0.803 22.2 14.2 < 3.5 
8 456 0.170 (0.051) 0.563 (0.1761 0.733 17.8 11.7 < 4.0 
9 405 0.133 (0.067) 0.641 (0.230) 0.774 24.3 14.7 < 4.5 

10 364 0.174 (0.079) 0.434 (0.186) 0.607 13.9 7.8 < 5.0 

(b) Persistence of MA(I)-GARCH(1, 1) models for daily S&P 500 returns 
1 9,558 0.089 (0.019) 0.906 (0.0t8) 0.995 147 202 137 
2 4,779 0.087 (0.015) 0.902 (0.015) 0.990 135 175 114 
3 3,186 0.108 (0.016) 0.870 (0.018) 0.979 98 119 74 
4 2,389 0.093 (0.016) 0.889 (0.(/191 0.983 158 194 121 
5 1 , 9 1 1  0.101 (0.015) 0.900 (0.025) 1.000 :c ~ 
6 1,593 0.127 (0.037) 0.838 (0.044) 0.965 117 135 79 
7 1,365 0.177 (0.085) 0.776 (0.076) 0.953 100 117 69 
8 1,194 0.137 (0.050) 0.821 (0.044) 0.958 129 145 83 
9 1,062 0.123 (0.035) 0.805 (0.052) 0.924 84 79 33 

10 955 0.173 (0.066) 0.768 (0.030) 0.941 114 127 71 

(a) The returns are based on 3,649 daily quotes tor the Deutschemark-U.S. dollar spot exchange rate 
from March 14, 1979 through September 29, 1993. Weekend and holiday quotes have been excluded. 
The length of the return intervals equals k days, for a total of [ T / k ]  observations, where [. ] denotes 
the integer value. See Table 2a for the definition of the half life, mean lag, and median lag. These 
measures are converted to trading days. 
(b) The returns are based on 9,558 daily observations for the Standard and poor's 500 composite index 
from January 2, 1953 through December 31, 1990. The length of the return intervals equals k days, for 
a total of [ T / k ]  observations, where [. ] denotes the integer value. See Table 2a for the definition of the 
half life, mean lag, and median lag. These measures are converted to trading days. 

e a r l i e r  e v i d e n c e  fo r  o t h e r  i n t e r d a i l y  e x c h a n g e  ra tes  r e p o r t e d  in  Ba i l l i e  a n d  B o i l e r -  

s l ev  (1989) .  

T h e  o b s e r v a t i o n s  a b o v e  s u g g e s t  tha t  t he  r e su l t s  fo r  t he  i n t r a d a y  e x c h a n g e  ra tes  

in  T a b l e  2a  a re  i n d i c a t i v e  o f  s e r i o u s  m o d e l  m i s s p e c i f i c a t i o n .  F o r  f u r t h e r  ana ly s i s ,  

w e  a g a i n  use  t he  e s t i m a t e s  fo r  t he  da i ly  G A R C H ( 1 ,  1) m o d e l  (&(z88~ = 0 .105  a n d  

/3(2881 = 0 .873 )  as  a na tu ra l  b e n c h m a r k  s i n c e  t h e s e  are  u n a f f e c t e d  b y  the  i n t r a d a y  

p e r i o d i c i t y .  T h e  r e su l t s  o f  D r o s t  a n d  N i j m a n  ( 1 9 9 3 )  a n d  D r o s t  a n d  W e r k e r  ( 1 9 9 6 )  

n o w  i m p l y  tha t  t he  i n t r a d a y  r e t u r n s  s h o u l d  f o l l o w  w e a k  G A R C H ( 1 ,  1) p r o c e s s e s  

w i t h  a ( ~ ) + / 3 ( k  ~ c o n v e r g i n g  to  un i ty  a n d  a(k ) c o n v e r g i n g  t o w a r d s  z e r o  as  t h e  

l e n g t h  o f  t he  s a m p l i n g  in t e rva l ,  k, d e c r e a s e s .  In  fac t ,  N e l s o n  (1990 ,  1992)  
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establishes general conditions under which GARCH(1, 1) models, even if misspec- 
ified at all frequencies, will satisfy the above convergence results and produce 
consistent estimates for the true volatility process at the highest sampling frequen- 
cies. Unfortunately, these predictions do not allow for deterministic effects in the 
volatility process. Yet, given the estimated standard errors, the 12 hourly through 
2 hourly returns (k = 24-144) are roughly in line with the qualitative predictions. 
Beyond this point the theoretical results are strongly contradicted, however. The 
most blatant violations are provided by the much lower volatility persistence, as 

^ ^ 1 1 measured by a(~) +/3(k ), for the models based on ~ -17  hourly returns (k = 6-18). 
For the 5-15 minute returns (k < 3) the sum of the estimates for ~(k) and /3(k) is 
again near unity, but the relative size of the coefficients does not conform to the 
theoretical predictions, as &(k) is tOO large. 

Our intraday results in Table 2a are not unusual. They mirror the range of 
estimates previously obtained in the literature over corresponding return frequen- 
cies. In particular, Engle et al. (1990) and Hamao et al. (1990) who primarily rely 
on returns over six hours or longer find evidence of volatility persistence that is 
consistent with estimates from daily data. In contrast, Baillie and Bollerslev (1991) 
and Foster and Viswanathan (1995), on using hourly and half-hourly returns, find 
much lower volatility persistence 32. However, the volatility persistence measures 
appear to rebound at the higher frequencies e.g. Bollerslev and Domowitz (1993) 
report 5-minute GARCH(1, 1) estimates for a(k ) + /3(k ) close to one but, as in 
Table 2a, &(k) seems too large. For the very highest frequencies, Locke and 
Sayers (1993) find that 1-minute returns generally display little volatility persis- 
tence. Conversely, Goodhart et al. (1993) detect very strong persistence in 
quote-by-quote data, but also find a marked decline in the persistence once 
information events are taken explicitly into account, illustrating how specific news 
arrivals may overwhelm the underlying conditional heteroskedasticity at the 
extremely high frequencies. 

Our findings provide strong, albeit indirect, evidence in support of the conjec- 
ture that a contributing factor to the systematic variation in volatility estimates 
across return frequencies is the interaction between the previously well docu- 
mented interdaily conditional heteroskedasticity and the intraday periodicity. For 
the highest frequencies the change in the intraday pattern will generally appear 
smooth between adjacent returns, and thus have little impact on the overall 
estimated degree of volatility persistence. However, as argued more formally 
below, the existence of short-lived intraday volatility components (in addition to 
the intraday periodicity) will tend to increase the dependence of (O't,k,) 2 on the 

32 Interestingly, Laux and Ng (1993) deviate from these studies by finding high persistence in 
half-hourly data for the CME currency futures. However, the futures market only operates during the 
most active trading in the U.S. segment of the foreign exchange interbank market and this represents a 
period of relative stability for the intraday volatility pattern. 
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. -  )2, relative to the overall volatility level, lagged squared innovation, (etch 
(~r,! n_ 1) 2, hence explaining the relatively large estimates for c~k ) at the shortest 

1 1 return intervals. For the intermediate 7 -1  ~ hour return models the change in the 
average volatility between sampling intervals will typically appear much more 
abrupt, resulting in significantly lower persistence measures. Beyond the 2-hour 
intervals the periodic pattern is averaged over a substantial part of the 24-hour 
trading day, and the intraday exchange rate estimates are generally closer to the 
implications obtained from daily models. 

The results for the S & P  500 equity returns tell a similar story. The interdaily 
estimates in Table 3b are again broadly consistent with the a priori predictions 
based on the daily GARCH(I ,  1) model 33. Although the volatility persistence is 
higher than for the foreign exchange returns, &~k) +/3~k) again displays a general 
smooth decline and the explicit persistence measures are fairly stable across the 
different return horizons. The discrepancy between the half lives, mean lags and 
median lags implied by the intradaily and interdaily returns are even stronger than 
for the foreign exchange rate data, however 34. Moreover, the pattern in the 
intraday estimates for a<~) +/3~k ) reported in Table 2b is again erratic, reaching 
lows at the ½-day (k = 40) and 20-25  minute (k = 4, 5) return horizons, and highs 
at the 4 0 - 5 0  minute (k = 8, 10) and 5-minute ( k - -  1) horizons. We conclude that 
the daily GARCH models conform closely to the theoretical predictions, but the 
strong intraday periodic patterns in volatility render the intradaily estimates highly 
variable and generally hard to interpret. 

5. The dynamics of filtered and standardized intraday returns 

This section proposes a general framework for modeling of high frequency 
return volatility that explicitly incorporates the effect of the intraday periodicity. 
The preceding section suggests that this is a prerequisite for meaningful time 
series analysis. Our approach is motivated by the stylized model in Section 3. 
While the model almost certainly is overly simplistic, the previous analysis 
suggests that the representation does capture the dominant features of our foreign 
exchange and equity return series and thus may serve as a reasonable first 
approximation. 

33 In this case the estimate for the daily MA(1) term equals 0.186, which is highly significant when 
judged by the corresponding asymptotic standard error of 0.012. Consequently the GARCH(1, 1) 
models for the other frequencies are, at best, approximate representations of the data generating process 
(see Drost and Nijman (1993) for a formal analysis). 

34 The previous footnote about the deletion of weekend exchange rate returns are even more pertinent 
here as both weekend and overnight equity returns are excluded. However, our informal analysis again 
found this to be inconsequential (see Andersen and Bollerslev, 1994). 
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Specifically, consider the following decomposition for the intraday returns, 

o"l s t , r tZ t ,  n 
R,. n = E ( R t , n )  + U , / 2  , (7) 

where E(Rt, n) denotes the unconditional mean, and N refers to the number of  
return intervals per day. Notice that this represents a generalization of  the model in 
Section 3, in that the periodic component for the nth intraday interval, st,,,, is 
allowed to depend on the characteristics of  trading day, t 35. Given the absence of  
any economic theory for stipulating a particular parametric form for the intraday 
periodic structure, a flexible nonparametric procedure seems natural. Although no 
one procedure is clearly superior, the smooth cyclical patterns documented in Fig. 
2a and b naturally lend themselves to estimation by the Fourier flexible functional 
form introduced by Gallant, 1981, 1982 36. In a related context, Dacorogna et al. 
(1993) have proposed estimating the periodicity in the activity in the foreign 
exchange market as the sum of three polynomials corresponding to the distinct 
geographical locations of  the market. Returns measured on their resulting theta-time 
scale correspond closely to our filtered returns defined and analyzed below. 
However, one advantage of  the approach advocated here is that it allows the shape 
of  the periodic pattern in the market to also depend on the overall level of  the 
volatility; a feature which turns out to be important for the equity market. Also, 
the combination of  trigonometric functions and polynomial terms are likely to 
result in better approximation properties when estimating regularly recurring 
patterns. Furthermore, our approach for estimating st. n utilizes the full time series 
dimension of  the returns data, as opposed to simply estimating the average pattern 
across the trading day. Full details of  the approach are provided in Appendix B. 
Meanwhile, it is clear from the estimated average intraday periodic patterns 
depicted in Fig. 6a and b, that the fitted values, ~t.n, provide a close approximation 
to the overall volatility patterns in both markets. Of course, the usefulness of  the 
procedure will ultimately depend upon the degree to which it is successful in 
identifying the periodic components in a temporal dimension as well. If  so, the 
approach may serve as the basis for a nonlinear filtering procedure that could 
eliminate the periodic components prior to the analysis of  any intraday return 
volatility dynamics 37 

35 This feature is particularly important for the equity returns for which the general U-shaped 
volatility pattern is transformed into more of a J-shape on the highest volatility days (see Andersen and 
Bollerslev, 1994). 

36 This technique has previously been applied to financial return series in a different context by Pagan 
and Schwert (1990). 

37 This same methodology may also be used directly for prediction of future volatility over different 
intraday time intervals. Such intraday volatility prediction may be particularly important in the pricing 
and/or continuous re-balancing of hedged intraday options positions. We shall not pursue this issue 
any further here, however. 
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Fig. 5. Flexible Fourier functional form of  intraday average absolute returns, (a) DM-$ ,  (b) S&P 500. 

5.1. Filtered foreign exchange returns 

To further investigate these issues, define the filtered 5-minute return series; 
~, , ,  = R,,n/gt," 38. If the characterization of the 5-minute return series in Eq. (7) is 
perfect and the associated estimation error is negligible, then ignoring the impact 
of  the weak first order return correlation, the filtered returns should conform more 
closely to the theoretical aggregation results for the GARCH(1, 1) model. We 
explicitly consider how well this hypothesis holds up, but we also keep in mind 

38 Alternatively, Rt,. might also be mean adjusted. Since the mean return is practically zero, this is 
immaterial. 
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that the elimination of  the main distorting effects of  the intraday periodicity may 
bring out new features of  the volatility process that were difficult to untangle prior 
to filtration. 

First, we briefly summarize the main characteristics of  the filtered series. While 
the mean and the standard deviation of  these returns are virtually unchanged from 
Table la, both skewness and kurtosis are generally reduced by filtering the returns. 
For instance, the 5-minute skewness and kurtosis for /~t.n equal 0.175 and 15.8, 
respectively. Interestingly, the evidence for negative return autocorrelations at the 
very highest frequencies becomes even more pronounced following the filtration, 
as measured by Pl = - 0 . 0 9 0  for the 5-minute returns. At the same time the first 
order absolute 5-minute return autocorrelations decline slightly to pg  = 0.292 39 
The correlation structure for the absolute 5-minute filtered returns is further 
illustrated in Fig. 7a. The upper curves represent the correlogram for the raw 
returns, while the middle curves are for the filtered returns. The dramatic reduction 
in the periodic pattern is particularly striking for the longest lags. However, from 
the daily peaks in the 5 day correlogram it is clear that some periodicity remains, 
suggesting the presence of  a stochastic periodic, or market specific, component in 
the intraday volatility 4o. Note also that the correlations for ]/~t,n] at the daily 
frequencies are always below the correlations for the raw absolute returns, ]Rt.,,]. 
This is consistent with the predictions from Eq. (5). 

More direct evidence is provided by the estimated MA(1)-GARCH(1,  l) 
models reported in Table 4a. Compared to the results in Table 2a, the volatility 
parameters now display a much more coherent pattern across the return frequen- 
cies 41. In accord with the theoretical aggregation results the estimates for ct~k ) + 

l tick) increase almost monotonically from the ~ day to the 2 hour frequency. For 
the higher frequencies the theoretical predictions again begin to falter, however, 
although less starkly than before. The sum &~k) +/3~k~ remains high, but no longer 
increases monotonically and more importantly, &~k) starts to increase while J3~k ~ 
generally declines. These findings again should be interpreted in light of  the 
absolute return autocorrelograms in Fig. 7a. The most striking feature is the initial 
rapid decay in the autocorrelations, followed by an extremely slow rate of  decay 
thereafter. This pattern is not consistent with the exponential decay associated with 
a GARCH(1, 1) model for the 5-minute returns. Instead, these findings point to a 
slow hyperbolic rate of  decay in the autocorrelation structure for the absolute 
returns, which is consistent with the presence of  long-memory features in the 

39 See Andersen and Bollerslev for extensive documentation of the summary statistics for both 
filtered and standardized returns. 

4o The distinction between heat wave, or market specific, volatility as opposed to meteor shower, or 
global, volatility clustering was first discussed in Engle et al. (1990). This finding also points to the 
potential gains of more general dynamic periodic volatility type modeling (see e.g. Bollerslev and 
Ghysels, 1996). 

41 To conserve space, we do not report the half life or the mean and median lags. 
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Fig. 7. Absolute returns, (a) D M - $ ,  (b)  S&P  500. 

volatility process (see e.g. Baillie et al., 1996; Dacorogna et al., 1993; Ding et al., 
1993). Note again the slightly higher peaks associated with the weekly frequen- 
cies. 

Although the GARCH(1, 1) estimates for the high frequency filtered returns 
defy the theoretical predictions, the results are encouraging in terms of our ability 
to recover meaningful intraday volatility dynamics. In particular, by eliminating 
the deterministic periodicity we were able to uncover an interesting pattern in the 
absolute return correlogram which was largely invisible prior to the periodic 
filtering. A detailed investigation of the source of this phenomenon is well beyond 
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Fig. 7 (continued). 

the scope of the present paper. However, we conjecture that the following factors 
have some impact on the observed correlation patterns. First, there may well be 
some positively cyclical correlated components left in the ]/~t,n[ series, thus 
inducing spurious short-run dynamics in the return volatility. Second, and more 
importantly, the results also point to the potential importance of several distinct 
intraday volatility processes governed by e.g. economic announcements, the 
release of  economic statistics, etc. each of which inherently may be of a less 
persistent nature than the volatility caused by changing trends in fundamental 
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Table 4 

k T / k  a(k ~ ,G(k ) a(k) + fl(k) 

(a) MA(1)-GARCH(1, l) models for filtered DM-$ exchange rate returns 

R ~ n  ~- 1 0 0 "  E i = ( n - -  l ) k +  l ,nkRt , i  = t£(k) -1- O(k) etk.n- I 
'+ e l ,  (o',k,) e = O~(k ) + a(k~(e[, 1) 2 + /3(k)(o-,~,, ,)2 t = 1, 2 . . . . .  260, n = 1, 2 . . . . .  288 /k  
1 74,880 0.176 (0.013) 0.795 (0.016) 0.971 
2 37,440 0.167 (0.012) 0.787 (0.015) 0.954 
3 24,960 0.172 (0.018) 0.756 (0.025) 0.928 
4 18,720 0.171 (0.019) 0.746 (0.029) 0.917 
6 12,480 0.135 (0.052) 0.788 (0.096) 0.923 
8 9,360 0.064 (0.051 ) 0.904 (0.082) 0.968 
9 8,320 0.043 (0.011 ) 0.938 (0.016) 0.981 

12 6,240 0.032 (0.011) 0.953 (0.016) 0.985 
16 4,680 0.033 (0.010) 0.951 (0.015) 0.984 
18 4,160 0.030 (0.009) 0.951 (0.013) 0.981 
24 3,120 0.020 (0.007) 0.969 (0.009) 0.989 
32 2,340 0.023 (0.006) 0.967 (0.007) 0.990 
36 2,080 0.022 (0.007) 0.964 (0.007) 0.986 
48 1,560 0.022 (0.008) 0.966 (0.007) 0.987 
72 1,040 0.028 (0.013) 0.950 (0.009) 0.978 
96 780 0.029 (0.014) 0.951 (0.009) 0.980 

144 520 0.040 (0.032) 0.915 (0.016) 0.955 

(b) MA(1)-GARCH(I, 1) models for filtered S&P 500 returns 
- k  - -  ~ __ k 

Rt .n  = 1 0 0 " ~ ' i = ( n  l ) k +  l ,nkRt , i  -- I'll(k) + O(k)Et,n-  1 
+ e2, (o't),) 2 = w(k)+ Ol(k)(e~,_ i) 2 + fl(k)(cr,!,_ i) 2, t =  1, 2 . . . . .  991, n =  1, 2 . . . . .  8 0 / k  
1 79,280 0.096 (0.009) 0.892 (0.011) 0.988 
2 39,640 0.086 (0.012) 0.905 (0.014) 0.991 
4 19,820 0.088 (0.017) 0.904 (0.019) 0.992 
5 15,856 0.071 (0.021) 0.923 (0.022) 0.994 
8 9,910 0.058 (0.015) 0.937 (0.016) 0.994 

10 7,928 0.058 (0.016) 0.936 (0.017) 0.994 
16 4,955 0.109 (0.060) 0.869 (0.074) 0.978 
20 3,964 0.084 (0.042) 0.893 (0.054) 0.977 
40 1,982 0.099 (0.039) 0.873 (0.053) 0.972 

(a) See Table 2a for construction of the raw return series. The method for obtaining the filtered returns, 
Rt.i, is described in the main text. 
(b) See Table 2b for the construction of the raw return series. The method for obtaining the filtered 
returns, ~qt.i, is described in the main text. 

e c o n o m i c  f a c t o r s  s u c h  as  t e c h n o l o g y  a n d  p r o d u c t i v i t y  42. T h e s e  d i s t i n c t  s o u r c e s  o f  

vo l a t i l i t y  p e r s i s t e n c e  c o u l d  s i m u l t a n e o u s l y  i n f l u e n c e  the  r e t u rn  se r i e s ,  r e s u l t i n g  in  

a m i x t u r e  d i s t r i b u t i o n  w i t h  d i f f e r e n t  i m p l i c a t i o n s  fo r  t h e  c h a r a c t e r  o f  t h e  sho r t -  a n d  

42 The distinct short-run volatility patterns induced by regularly scheduled macroeconomic announce- 
ments have been analyzed by Ederington and Lee (1993). 
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long-run dynamics. A promising first attempt at modeling this interaction between 
the volatility processes at different time resolutions within a unified framework 
have been suggested by Miiller et al. (1995). In their so-called heterogeneous 
ARCH, or HARCH, model the volatility at the highest frequency is determined by 
the sum of numerous ARCH type processes defined over courser time intervals, 
where each of  these components in turn may be linked to the actions of  different 
types of traders with varying time horizons 43 

5.2. Standardized foreign exchange returns 

The conjectures underlying a components type formulation of  the volatility 
process are further reinforced by our analysis of  the standardized 5-minute returns; 
R,. n -Rt. , , /(~-tgt.n).  If  our model provides a good approximation to the data 
generating process, then this series should display little ARCH effects at daily and 
lower frequencies, and the intraday ARCH effects should diminish. Consistent 
with this prediction, the absolute return autocorrelations at the lowest intraday 
frequencies have been reduced markedly. This is also manifest in the lower curves 
in Fig. 7a, which depict the correlograms for I/~r.,,L Apart from small spikes 
associated with remaining stochastic periodicity at the daily frequency, the correla- 
tions for the absolute returns are generally close to zero beyond the two day lag. 
Thus, the daily GARCH(1, 1) volatility estimates appear to provide quite satisfac- 
tory estimates for the interday volatility dynamics 44. At the same time, Fig. 7a is 
also indicative of  important short-run dynamics that necessarily are unaccounted 
for by the daily GARCH(1, 1) volatility estimates. This again lends support to our 
conjecture of  distinct short-run, or intraday, components in the fundamental return 
volatility generating process. The MA(1)-GARCH(1,  1) estimates for the stan- 
dardized returns in Table 5a reinforce this interpretation by exhibiting a sharp 
decline in &(k) +/3(k) as the return horizon increases from five minutes to one 
hour. In fact, beyond the one hour sampling frequency, the volatility clustering is 
sufficiently weak that the GARCH(1, l) specification breaks down, and only 
ARCH(I )  or homoskedastic MA(1) models are estimated. 

5.3. Filtered equity returns 

We now turn to the corresponding findings for the S & P  500 returns. In 
interpreting the results, it is important to recognize that the estimated intraday 
periodicity now involves interaction terms between the daily volatility level and 

43 Stationary conditions for this new class of time series models are developed in Darorogna et al. 
(1995). 

44 Of course, this apparent lack of any significant long-run correlations in the standardized returns 
may be due to the relatively short sample of only one year. With a longer span of data the GARCH(I, 
I) model will most likely fail to capture all the low frequency dynamics (see e.g. Baillie et al., 1996). 
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Table 5 

k T / k  ~(k~ ~(k) a(~)+ ~(~ 

(a) MA(I)-GARCH(1,  1) models for standardized DM $ exchange rate 

^k 1 0 0 . ~ i = O  ' RI. , ,  =- I )k+ l . ,~kR~.i  = IX~k) + O~k~e/'.,, I 
Jr- ~tkn (O ' / !n)  2 = ¢..O(k) q- a (k) (~gk n i )  2 -{- /~{/,){{Ttk,, 1 )2,  1 =  l ,  2 . . . . .  260, n =  1, 2 . . . . .  2 8 8 / k  
1 74,880 0.182 (0.014) 0.766 (0.021) 0.948 
2 37,44(1 0.167 (0.015) 0.760 (0.029) 0.927 
3 ' 24,960 0.172 (0.0191 0.706 (0.037) 0.877 
4 18,720 0.177 (0.1116) 11.666 (0.034) 0.843 
6 12,480 0.173 10.0231 0.603 (0.1/47) 0.776 
8 9,360 0.177 (0.028) (1.484 (0.105 ) 0.661 
9 8,320 0.123 (0.031/) /).607 (0.143) 0.729 

12 6,240 0.158 (0.028) 0.376 (0.071) 0.534 
16 4,680 0.184 10.034) - -  0.184 
18 4,160 0.089 (0.1126) - -  0.089 
24 3,120 0.088 (0.11341 - -  0.088 
32 2,340 0.072 (0.031 ) - -  0.072 
36 2,080 0.083 (0.1149) - -  0.083 
48 1,560 - -  - -  - -  
72 1,040 - -  - -  - -  
96 780 . . . .  

144 520 - -  - -  - -  

(b) MA(I) -GARCH(I ,  l) models for standardized S&P 50(I returns 
^k __ ^ __ k 

R~.n = 1 0 0 " ~ i T ( n  I )k+ l , n kR t , i  - tZ(k'~ + O(k)~t,a I 
+ e~,, (o-,k,,)" = wc~ ) + a~k)(e,~,, i) 2 + ~)(cr,  k,,_ i) 2, t = I, 2 . . . . .  991, n = 1, 2 . . . . .  8 0 / k  
1 79,280 0.095 10.007) 0.877 (0.012) 0.973 
2 39,640 0.107 (0.012) 0.841 (0.022) 0.949 
4 19,820 0.127 (0.021 ) 0.764 (0.053) 0.890 
5 15,856 0.124 (0.024) 0.765 (0.047) 0.889 
8 9,910 0.117 (0.027) 0.727 (0.070) 0.843 

10 7,928 0.126 10.(/231 0.681 (0.047) 0.807 
16 4,955 0.215 (0.074) 0.512 (0.051 ) 0.727 
20 3,964 0.159 (0.096) 0.551 (0.037) 0.710 
40 1,982 0.250 (0.160) - -  0.250 

(a) See Table 2a for construction of the raw return series. The method for standardizing the returns, 
/~t i is described in the main text. 
(b) See Table 2b for construction of the raw return series. The standardized returns, Rt.i, are generated 
as described in the main text. 

t h e  F o u r i e r  f u n c t i o n a l  f o r m ,  so  t ha t  n o t  o n l y  t h e  l eve l  b u t  a l so  t h e  s h a p e  o f  t h e  

v o l a t i l i t y  p a t t e r n  v a r i e s  w i t h  o-,. T h u s ,  o u r  s t y l i z e d  d e t e r m i n i s t i c  p e r i o d i c  m o d e l  

d i s c u s s e d  in  S e c t i o n  3 is  n o t  s t r i c t ly  v a l i d  in th i s  c o n t e x t  i .e.  g e n e r a l l y  st, n 4: s .... 
f o r  t 4= r .  C o u n t e r  to t he  r e s u l t s  f o r  t he  D M - $  r e t u r n s ,  t h i s  t i m e - v a r y i n g  v o l a t i l i t y  

c o m p o n e n t  m a y  w e a k e n  t h e  a u t o c o r r e l a t i o n s  fo r  t h e  r a w  a b s o l u t e  r e t u r n s  as ,  

e f f e c t i v e l y ,  a d d i t i o n a l  n o i s e  is  i n j e c t e d  i n t o  t h e  r e t u r n s  p r o c e s s .  F ig .  7 b  s e e m  to  

i n d i c a t e  t h a t  t h i s  i s  i n d e e d  t h e  c a s e ,  as  t he  c o r r e l o g r a m  fo r  t h e  f i l t e r e d  a b s o l u t e  
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returns, I Rt,n[, lies substantially above that for the raw series, [R,.,,I. Interestingly, 
this does not just occur at the 5-minute sampling frequency; the absolute return 
autocorrelation across the nine different intraday frequencies, as measured by pA, 
QA(10) and VR A, are all markedly higher than the corresponding statistics for the 
raw returns in Table lb 45. This is also in line with the M A ( I ) - G A R C H ( 1 ,  1) 
estimation results reported in Table 5b. The parameter estimates obtained as we 

I move from the ~ day to the 40-minute return horizon are again consistent with the 
theory. Thereafter, the sum ~(k) and /3(k) decay slightly, but more importantly ~(k) 
starts to increase. However,  all the intraday estimates now consistently p ~ n t  
towards a very high degree of volatility persistence and in all instances c~(~) +/3(k ) 
are higher than the estimates for the raw return series in Table 2b. Note also, that 
in line with the findings for the D M - $  returns, the 5 day correlogram in Fig, 7b 
for the 5-minute filtered S & P  500 returns still retains a distinct periodic pattern, 
indicating the presence of even more complicated stochastic volatility components. 
Nonetheless, the simple filtering procedure again succeeds in eliminating a large 
proportion of the systematic intraday variation in the absolute returns and in so 
doing has unveiled a cleaner and starkly different picture of  the volatility 
dynamics. 

5.4. Standardized equity returns 

In contrast to the results for the D M - $ ,  the first order autocorrelations for the 
standardized absolute returns for the S & P  500, ^k [Rt,,,I, remain highly significant for 

I the lower intraday frequencies, Even at the ?- day return frequency, pA = 0.094 
exceed the corresponding asymptotic standard error by more than a factor four. 
This is also confirmed by the much higher a(k ) +/3(k ) estimates for the intraday 
GARCH(1,  1) models for / ~  given in Table 5b. Similarly, the correlograms in 1,7l 

Fig. 7b for the standardized returns indicate a much higher degree of volatility 
persistence in the 5-minute S & P  500 returns than was the case for D M - $  returns. 
In fact, the standardized absolute return correlogram stays mostly positive for the 
first 22 trading days, or about a month. This indication of more persistent volatility 
dynamics is likely attributable to the longer time span for the equity data. For 
example, Dacorogna et al. (1993) find that the absolute standardized return 
autocorrelations remain positive for one month when using 20-minute D M - $  data 
over a four year sample. Additionally, from Guillaume (1994) it is evident that our 
ability to detect significant long-horizon absolute return correlations is intimately 
linked to the length of the sampling period. Hence, although the interdaily 
GARCH(1,  1) model may capture a large portion of the day-to-day volatility 
clustering, the model ' s  deficiency in dealing with long-memory behavior necessar- 
ily becomes more transparent when the time span of the data increases. 

45 For instance, pA for the aggregated filtered returns, Ig~,,I, equal 0.371, 0.379, 0.341, 0.335, 0.305, 
0.303, 0.292, 0.290 and 0.292 for k = 1, 2, 4, 5, 8, 10, 16, 20 and 40, respectively. 
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We conclude, that in spite of important institutional differences in the markets 
and the associated intradaily volatility patterns, there is strong indications that the 
volatility processes for the foreign exchange and the U.S. equity market share 
several important qualitative dynamic features. Moreover, these characteristics 
were largely invisible prior to our filtration of the intraday periodic structures in 
the high frequency return series. At the same time interesting differences between 
the average volatility level and volatility persistence in the two markets also 
emerge. These conclusions would be next to impossible to reach from the, at first 
sight, rather perplexing estimates obtained directly from the raw high frequency 
returns. 

6. Concluding remarks 

Our analysis of the intraday volatility patterns in the DM-$ foreign exchange 
and S&P 500 equity markets documents how traditional time series methods 
applied to raw high frequency returns may give rise to erroneous inference about 
the return volatility dynamics. Explicit allowance for the influence of the strong 
periodicity, as exemplified by our flexible Fourier form, is a necessary require- 
ment for discovery of the salient intraday volatility features. Moreover, adjusting 
for the pronounced periodic structure appears critical in uncovering the complex 
link between the short- and long-run return components, which may help to 
explain the apparent conflict between the long-memory volatility characteristics 
observed in interday data and the rapid short-run decay associated with news 
arrivals in intraday data. More directly, however, our findings have immediate and 
important implications for a large range of issues in the rapidly growing literature 
using very high frequency financial data. Examples include investigations into the 
lead-lag relationship among returns and volatility both within and across different 
markets, the effect of cross listings of securities, the fundamental determinants 
behind the volatility clustering phenomenon, the development of real time trading 
and investment strategies and the evaluation of continuous option valuation and 
hedging decisions. Only future research will reveal the extent of the biases induced 
into these studies by the neglect of intraday periodic components. 
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Appendix A. Data description 

A.1. The Deutschemark-U.S. dollar exchange rate data 

The DM-$  exchange rate data consist of all the quotes that appeared on the 
interbank Reuters network during the October 1, 1992 through September 29, 
1993 sample period. The data were collected and provided by Olsen and Associ- 
ates. Each quote contains a bid and an ask price along with the time to the nearest 
even second. Approximately 0.36% of the 1,472,241 raw quotes were filtered out 
using the algorithm described in Dacorogna et al. (1993). During the most active 
trading hours, an average of five or more valid quotes arrive per minute; see 
Bollerslev and Domowitz (1993). The exchange rate figure for each 5-minute 
interval is determined as the interpolated average between the preceding and 
immediately following quotes weighted linearly by their inverse relative distance 
to the desired point in time. For instance, suppose that the bid-ask pair at 14.14.56 
was 1.6055-1.6065, while the next quote at 14.15.02 was 1.6050-1.6055. The 
interpolated price at 14.15.00 would then be exp{1 /3 .  [ln(1.6055)+ 
!n(1.6065)]/2 + 2 / 3  • [ln(1.6050) + ln(1.6055)]/2} = 1.6055. The nth 5-minute 
return for day t, Rt, ., is then simply defined as the difference between the 
midpoint of the logarithmic bid and ask at these appropriately spaced time 
intervals. This definition of the returns has the advantage, that it is symmetric with 
respect to the denomination of the exchange rate. However, as noted by MiJller et 
al. (1990), the numerical difference from the logarithm of the middle price is 
negligible. All 288 intervals during the 24-hour daily trading cycle are used. 
However, in order to avoid confounding the evidence in the correlation analysis 
conducted below by the decidedly slower trading patterns over weekends, all the 
returns from Friday 21.00 Greenwich mean time (GMT) through Sunday 21.00 
GMT were excluded (see Bollerslev and Domowitz (1993) for a detailed analysis 
of the quote activity in the DM-$  interbank market and a justification for this 
' weekend' definition). Similarly, to preserve the number of returns associated with 
one week we make no corrections for any worldwide or country specific holidays 
that occurred during the sample period. All in all, this leaves us with a sample of 
260 days, for a total of 74,880 5-minute intraday return observations i.e. R,,,,, 
n = 1, 2 . . . . .  288, t = 1, 2 . . . . .  260. 

A.2. The standard and poor's 500 stock index futures data 

The intraday S&P 500 futures data are based on 'quote capture' information 
provided by the Chicago Mercantile Exchange (CME) from January 2, 1986 
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through December 31, 1989. The data specify the time, to the nearest 10 seconds 
and the exact price of the S & P  500 futures transaction whenever the price differs 
from the previously recorded price 4~,. The calculation of the returns is based on 
the last recorded logarithmic prices for the nearby futures contract over consecu- 
tive five minute intervals. The price record covers the full trading day in the 
futures market from 8.30 a.m. (central standard time) to 3.15 p.m. Although, the 
New York Stock Exchange closes at 3.00 p.m., we retain the last three 5-minute 
returns from the futures market in the analysis reported on below. The first return 
for the trading day, i.e. from 8:30 to 8:35 a.m., constitutes another unusual time 
interval. This period incorporates adjustments to the information accumulated 
overnight, and consequently displays a much higher average return variability than 
any other 5-minute interval. In effect, this is not a 5-minute return, and we 
therefore delete it in the subsequent analysis. Alternatively, it would be possible to 
account for this special return interval using dummy variables. However, any such 
procedure is invariably ad hoc in nature. Furthermore, informal investigations 
reveal little sensitivity to the exact treatment of the overnight returns. We thus 
elect to work exclusively with the 5-minute returns. Following Chan et al. (1991), 
we also exclude the October 15 through November 13, 1987 time period around 
the stock market crash due to the frequent trading suspensions. Outside these four 
weeks trading suspensions were rare, but did occur. In these instances the missing 
prices were determined by linear interpolation, leading to identical returns over 
each of  the intermediate intervals. This obviously smoothes the series over the 
missing data points which will mitigate the effect of sharp price changes subse- 
quent to a trading suspension. Experimentation with exclusion of  trading days with 
missing observations indicate that the findings pertaining to the degree of  volatility 
persistence reported on here are virtually unaffected by this interpolation. All in 
all, these corrections result in a sample of  991 days, each consisting of  80 intraday 
5-minute returns, for a total of 79,280 observations i.e. R,,,,, n -- 1, 2 . . . . .  80, 
t = l , 2  . . . . .  991. 

Appendix B. Flexible Fourier form modeling of intraday periodic volatility 
components 

From Eq. (7), define, 

xt,,, =- 21og[ IR , . , , -  E ( R , , , , ) I ]  - log or, 2 + log U = log s 2 + log Z 2 t,n t,n • 

( A . I )  

46 We are grateful to G. Andrew Karolyi for providing us with this 5-minute price series. The same 

set of data has also been analyzed from a different perspective in Chan et al. (1991). 
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Our modeling approach is then based on a non-linear regression in the intraday 
time interval, n, and the daily volatility factor, o-,, 

x,,,, = f ( 0 ; o "  t, n) + u, .... (A.2)  

where the error, ut.,,-= log Z ~ , , -  E(log Z~,,), is i.i.d, mean zero. In the actual 
implementation the non-linear regression function is approximated by the follow- 
ing parametric expression, 

J [ n / /2  D 

f( O;cr,, n) =E°'tJi-o [ ~oj +/x,j~ +/-'.2j-~, + Ea,jI,,=,:i 
i = 1  

+i Yl, J c o s - - - - ~  + 6pj sin N ' 

where N j - N - I ~ i _ j , N i = ( N +  I ) /2  and Nz=-N-I~ i  t , x i 2 = ( N +  l ) (N+ 
2 ) / 6  are normalizing constants. For J = 0 and D = 0, Eq. (A.3) reduces to the 
standard flexible Fourier functional form proposed by Gallant (1981, 1982). 
Allowing for J > 1 and thus a possible interaction effect between o-/ and the 
shape of the periodic pattern might be important in some markets, however. Each 
of  the corresponding J flexible Fourier forms are parameterized by a quadratic 
component  (terms with ix-coefficients) and a number of  sinusoids (the 7- and 
6-coefficients). Moreover, it may be advantageous to also include time specific 
dummies for applications in which some intraday intervals do not fit well within 
the overall regular periodic pattern (the A-coefficients). 

Practical estimation is most easily accomplished using a two-step procedure. 
Firstly, a generated x,, . series, 2t,,,, is obtained by replacing E(R,.,,) with the 
sample mean of the returns, ~',., and cr t with the estimates from a daily volatility 
model, say 6- t. Substituting ~t for o-, and treating ~-,.,, as the dependent variable 
in the regression defined by Eqs. (A.2) and (A.3) allow the parameters to be 
estimated by ordinary least squares (OLS). Note that from Eq. (3), 6, 2 represents 
an estimate of  M(sZ)o-t 2, so that after substitution for o- t in Eq. (A.2), the term 
- l o g  M(s  2) is implicitly included in the constant term in Eq. (A.3), /Zoo. Let 

f , , , - f ( 0 ; 6 " , ,  n) denote the resulting estimate for the right hand side of Eq. 
(A.3) 4v. The normalization T - I ~ , , _  I,N~,t=I,[T/N]St,n ~ 1, where [T/N] denotes 
the number of  trading days in the sample, then suggests the following estimator of 
the intraday periodic component  for interval n on day t, 

T" e x p ( £ , , , / 2 )  
^ ~ 
st,,, y.~T/ff]EN= , e x p ( f , . / 2  ) (A.4)  

Note that although the periodic modeling procedure is designed for fitting the 

47 Given consistent estimates for 6" t, the resulting parameter estimates will generally be consistent. 
However, the use of generated regressors may result in a downward bias in the conventional OLS 
standard errors for the parameter estimates (see Pagan, 1984). 
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ave rage  vola t i l i ty  pa t t e rn  across  the  N in t raday  in te rva ls ,  the  s econd - s t age  es t ima-  

t ion o f  Eq. (A .3 )  is ba sed  on  a t ime  ser ies  r eg res s ion  that  inc lude  all T in t r aday  

re turns .  U t i l i z ing  this  add i t iona l  i n f o r m a t i o n  in the  data  r a the r  than  s imp ly  f i t t ing 

the  ave r age  in t r aday  pa t te rn ,  e n h a n c e s  the e f f i c iency  o f  the  es t imat ion .  

T h e  first  s tep o f  our  p rocedu re  i nvo lves  the  d e t e r m i n a t i o n  of  the  dai ly  vola t i l i ty  

f ac to r  e s t ima tes  i.e. ~t. G i v e n  the  re la t ive  success  o f  the  dai ly  M A ( 1 ) - G A R C H ( 1 ,  

1) m o d e l s  in exp la in ing  the agg r ega t i on  resu l t s  for  the in te rda i ly  f r equenc i e s  in  

b o t h  marke t s ,  th is  appears  to be a na tu ra l  choice .  Next ,  the  n u m b e r  o f  in t e rac t ion  

te rms,  J and  the t runca t ion  lag for  the Four i e r  expans ion ,  P ,  m u s t  be  de t e rmined .  

Th i s  is d o n e  p r imar i ly  on  the  bas i s  o f  p a r s i m o n y  i.e. for  each  o f  the re tu rn  ser ies  

we c h o o s e  the m o d e l  tha t  bes t  m a t c h e s  the basic  shape  of  the  per iod ic  pa t t e rn  wi th  

the  f e w e s t  n u m b e r  o f  pa ramete r s .  T he  re su l t ing  es t ima tes  for  the  D M - $  re tu rns  

wi th  J = 0 a n d  P = 6 a r e ,  

L , ,  = 

n n 2 

0.72 - 8.39 - -  + 5 . 5 9 - -  
(1.06) ( 4 . 1 4 )  NI (4.14) N2 

2"n'n 27rn 2~-2n 21r2n 
- 2.51 c o s - -  - 0.40 s i n - -  - 0.38 c o s - -  +0.06sin 

(--6.15) N (-  1044) N ( 3.71) N (2.70) N 
27r3n 2rr3n 27r4n 27T4n 

+ 0 . 4 2 C O S - -  -- 0.09 s i n - -  -- 0.02 cos + 0.35 sin 
(8.79) N (4.89) N (-0.53) N (20.48) N 

27r5n 0.22 27r5n 27r6n 2rr6n 
-- 0.12 c o s - -  + -  sin 0.23 cos +0.01sin  

(-5.38) N (13.35) N ( 12.67) N (0.45) N 

w h e r e  the  n u m b e r s  in pa r en t he s e s  ind ica te  he t e roskedas t i c  robus t  t -s tat is t ics .  I t  is 

e v i d e n t  f r o m  the  c o r r e s p o n d i n g  fit  in Fig. 6a, tha t  th is  r ep r e sen t a t i on  p r o v i d e s  an  

exce l l en t  overa l l  cha rac t e r i za t i on  of  the  ave r age  in t rada i ly  pe r iod ic i ty  in the  

D M - $  marke t .  C o n s i s t e n t  wi th  Fig. 2a, the  bas ic  shape  o f  the  per iod ic  pa t t e rn  

appea r s  i nva r i an t  to the  dai ly  vola t i l i ty  level  i.e. J = 0. 

In contras t ,  ou r  p re fe r red  mode l ,  the  S & P 500,  re tu rns  sets J = 1 and  P = 2, 

- 1.85 
( - 3 . 03 )  

f.,, = - 0.16 l,,=d, 
( 0 . 5 3 )  

2am 
+ 1.18 c o s - -  - 

(3.11) N 

- 0.54 
(0.95) 

--(O-ol'~9)In=d' 

- 0.37 cos 2~n  
L ( -  1.06) N 

1,/2 n 
- 3 . 0 7 - -  - 2.68 - -  

(I 62) N~ ( - 2.05) N2 

- -  0 . 6 2  I n_ de q- 1 . 1 1  1 , ,_  d3 
( -  1.83) (2.99) 

27rn 2~-2n 
0.59 sin + 0.28 cos 

( - 6 . 14 )  N (294) N 

n n 2 
1 . 7 3  - -  + 1 . 5 7 - -  

( - 0.9s) N~ (1.29) N2 

- 0.30 /,, d2 
( - 0.97) 

2~-n 
+ 0.12 s i n - -  - 

(1.30) N 

2~2n  
0.14 sin 

( -2 .31 )  N 

A l t h o u g h  few of  the  coef f i c ien t s  in the  e x p a n s i o n  c o r r e s p o n d i n g  to J =  1 are 

i nd iv idua l ly  s ign i f ican t ,  l e av ing  out  the  in te rac t ion  ef fec t  resul t s  in a s e e m i n g l y  

- 0.69 l.=d~ 
( 2 . 0 2 )  

2rr2n 2~r2n 
0.17 cos 0.03 sin 

( -  1.97) N ( 0 . 5 0 )  N 
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in fe r io r  overa l l  fit. As  seen  in Fig. 2b, the  vola t i l i ty  prof i le  for  the  last  f i f teen  

m i n u t e s  o f  t r ad ing  ( in te rva l s  78, 79 and  80)  shows  an ab rup t  c h a n g e  f rom the  

overa l l  s m o o t h  in t r aday  pat tern .  Th ree  d u m m y  var i ab les  are i nc luded  to m i n i m i z e  

the  d i s to r t ions  tha t  m a y  o t h e r w i s e  ar ise  f rom this  d is t inc t  pe r iod  i.e. d I = 78, 

d 2 = 79  and  d 3 = 80. T he  resu l t ing  fi t  dep ic ted  in Fig. 6b  aga in  tes t i f ies  to the  

success  o f  this  r e la t ive ly  s imp le  p r o c e d u r e  for  m o d e l i n g  the pe r iod ic i ty  in in t raday  

f inanc ia l  m a r k e t  volat i l i ty .  
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