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Abstract

This paper presents an empirical investigation of scaling and multifractal properties of US
Dollar–Deutschemark (USD–DEM) returns. The data set is ten years of 5-min returns. The
cumulative return distributions of positive and negative tails at di8erent time intervals are linear
in the double logarithmic space. This presents strong evidence that the USD–DEM returns exhibit
power-law scaling in the tails. To test the multifractal properties of USD–DEM returns, the mean
moment of the absolute returns as a function of time intervals is plotted for di8erent powers of
absolute returns. These moments show di8erent slopes for these powers of absolute returns. The
nonlinearity of the scaling exponent indicates that the returns are multifractal.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Researchers have been investigating scaling laws in ?nance for a long time. The
beginnings may be traced back to the late 1920s. 1 At that time, the work emphasized
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1 In the late 1920s, Elliot wave principle claimed that stock markets do not behave in a chaotic manner,
but move in repetitive cycles.
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the appearance of patterns at di8erent time scales. In the 1960s, a class of stable
distributions was put forward to account for the power-law tail behavior of ?nancial
series. 2 Fractals and chaos coming from physical science led to a new wave of interest
in scaling in the 1980s. 3 In recent years, the study of scaling laws resurged due to
the availability of high-frequency data.
Scaling expresses invariance with respect to translation in time and change in the

unit of time. That is, except for amplitude and rate of change, the rules of higher- and
lower-frequency variation are the same as the rules of mid-speed frequency variation,
Mandelbrot [4]. Scaling is a rule that relates returns over di8erent sampling intervals.
The shape of the distribution of returns should be the same when the time scale is
changed, Calvet and Fisher [5]. In empirical studies, the scaling analysis typically
exploits some kind of linear relationship between logs of variables.
In the literature, many empirical studies have shown that ?nancial time series ex-

hibit scaling like characteristics. MGuller et al. [6] and Guillaume et al. [7] reported an
empirical scaling law for mean absolute price changes over a time interval for foreign
exchange rate. Dacorogna et al. [8] presented empirical scaling laws for US Dollar–
Japanese Yen (USD–JPY) and British Pound–US Dollar (GBP–USD). Mantegna and
Stanley [9] also found scaling behavior in the Standard and Poor index (S&P 500)
by examining high frequency data. Recently, Gen.cay et al. [10] suggested that ?nan-
cial time series may not follow a single-scaling law across all horizons. They used a
wavelet multi-scaling approach to show that foreign exchange rate volatilities follow
di8erent scaling laws at di8erent horizons. They provided evidence that there was no
unique global scaling in ?nancial time series but rather scaling was time varying.
However, some literature continued to question the evidence of the scaling laws in

foreign exchange (FX) markets. LeBaron [11] examined the theoretical foundation of
scaling laws. He demonstrated that many graphical scaling results could have been
generated by a simple stochastic volatility model. He suggested that dependence in
the ?nancial time series might be the key cause in the apparent scaling observed.
LeBaron [12] presented a simple stochastic volatility model, which was able to produce
visual power-laws and long memory similar to those from actual return series using
comparable sample sizes. However, Stanley et al. [13] pointed out that a three-factor
model cannot generate power-law behavior.
Whether or not the ?nancial time series follow power-law and the type of scaling

rule they obey are still open questions. In this paper, we will investigate intra-day
US Dollar–Deutschemark (USD–DEM) returns and provide evidence that the tails of
returns do follow power-law. Furthermore, the returns exhibit multifractal behavior.
Section 2 is on the discussion of two types of scaling behaviors of USD–DEM returns.
Namely, the behavior of the tails of the distribution of returns keeping the time interval
of returns constant and the behavior of the moments of the absolute value of returns
as a function of time interval. We conclude afterwards.

2 See Mandelbrot [1] and Fama [2] for details.
3 See Peters [3] for a survey of fractals and chaos.
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2. Scaling and multifractality

2.1. Data set

The data set studied in this paper is the USD–DEM 5-min return series from January
4, 1987 21:05 Greenwich Mean Time (GMT) to December 31, 1998 21:00 GMT. The
weekends from Friday 21:05 GMT to Sunday 21:00 GMT are eliminated. Therefore,
there are 5 business days in a week. Foreign exchange market is a worldwide market
with no business hour limitations. 4 Therefore, each day has 24 h of data. The total
number of observations is 90,1152.
High frequency (less than 10-min) foreign exchange returns are reported to have

three important properties: negative ?rst-order autocorrelation, discreteness of quoted
spreads, and short-term triangular arbitrage, Dacorogna et al. [8]. The autocorrelation
function for USD–DEM 5-min returns up to 5 h is plotted in Fig. 1. Negative auto-
correlation is observed in our data up to 20 min.
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Fig. 1. 5 h lag of autocorrelation for the USD–DEM 5-min returns. Negative autocorrelation is observed up
to a time lag of 20 min.

4 Please see Dacorogna et al. [8] for a detailed examination of high-frequency ?nancial time series.
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Scaling and fractal properties of USD–DEM returns are investigated by studying the
aggregate 20-min, 1-h, 2-h, 4-h, 6-h, 8-h and daily returns. The aggregated returns are
de?ned by

[rt]� =
�∑

i=1

r�(t−1)+i ; t = 1; : : : ; 901; 152=� ; (1)

where rt is the original 5-min returns, [rt]� represents the returns at di8erent aggregated
levels. For example, the 20-min returns are constructed by summing four 5-min returns,
which �= 4. 20-min aggregate returns are de?ned via

[rt]4 =
4∑

i=1

r4(t−1)+i ; t = 1; : : : ; 225; 288 :

In the similar way, 1-h, 2-h, 4-h, 6-h, 8-h and daily returns are obtained by summing
12, 24, 48, 72, 96 and 288 5-min returns, �=12, 24, 48, 72, 96 and 288, respectively.
Distributions of the USD–DEM 5-min, 20-min, 1-h, 2-h, 4-h, 6-h, 8-h, 1-day returns

and the normal distribution are plotted in Fig. 2 (Top). Fig. 2 (Bottom) compares
distributions of the USD–DEM 5-min, 20-min, 1-h, 2-h, 4-h, 6-h, 8-h and 1-day nor-
malized returns with the standard normal distribution. The returns are normalized by
the standard deviation of the returns. The return distributions at high frequencies up to
1 day are clearly not Gaussian with pronounced peaks, thin waists and fat tails. Positive
tails of USD–DEM normalized returns are shown in Fig. 3. Returns have fatter tails
than the normal distribution.

2.2. Scaling

To investigate the scaling properties of the tails, cumulative distributions of the
positive and negative tails for normalized 5-min returns are plotted in a log–log space
(Fig. 3, Top). The straight line in the graph suggests that 5-min returns exhibit a
power-law scaling in the tails. Both the negative and positive tails follow the same
power-law.
When cumulative distributions of the positive and negative tails for 5-min, 20-min,

1-h, 2-h, 4-h, 6-h, 8-h and 1-day returns are plotted in log–log space in one graph
(Fig. 4, Bottom), it indicates a strong similarity of the tail probabilities over sev-
eral di8erent time horizons. Both tails at each interval scale as straight lines, except
for the daily ones because of the small amount of data. The straight lines are paral-
lel to each other, which suggests that the tails at di8erent intervals follow the same
power-law.
The straight lines in these graphs present strong evidence that the USD–DEM returns

exhibit a power-law scaling in the tails. This leads to an asymptotic power-law for the
cumulative distribution for both the positive and negative tails in the form

f(rt) ∼ Cr−
t ; (2)

where ∼ means “is distributed as”, C is a prefactor and 
 is scaling exponent, or
tail index. 
 can be estimated from the slopes of these straight lines. Tail indices and
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Fig. 2. Top: Probability density function of the 5-min, 20-min, 1-h, 2-h, 4-h, 6-h, 8-h, 1-day returns and the
normal distribution. Bottom: Probability density function of the 5-min, 20-min, 1-h, 2-h, 4-h, 6-h, 8-h, 1-day
normalized returns and standard normal distribution. The return distributions at high frequencies up to one
day are clearly not Gaussian with pronounced peaks, thin waists and fat tails.

the corresponding bootstrap con?dence intervals are presented in Table 1. The value
for the tail index under aggregation is quite stable except for the daily interval where
the number of data points becomes scarce for reliable estimates. Tail indices and the
corresponding con?dence intervals for the positive tails are plotted in Fig. 5.
The tail estimates for USD–DEM returns at di8erent intervals are in the range 2.8777–

4.4307, which contradicts the additive LQevy walk model. The LQevy distributions for
?nancial Ructuations proposed in Mandelbrot [1] are subject to the limitation 06 
6 2.



Z. Xu, R. Genc8ay / Physica A 323 (2003) 578–590 583

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Normalized Returns

P
ro

ba
bi

lit
y 

D
en

si
ty

5-min
20-min
1-hour
2-hour
4-hour
6-hour
8-hour
1-day
Normal

2.5 3 3.5 4 4.5
0

0.01

0.025

0.03

Normalized Returns

P
ro

ba
bi

lit
y 

D
en

si
ty

5-min
20-min
1-hour
2-hour
4-hour
6-hour
8-hour
1-day
Normal

Fig. 3. Top: The positive tails of 5-min, 20-min, 1-h, 2-h, 4-h, 6-h, 8-h, 1-day returns and standard normal
distribution. Returns have fatter tails than normal distribution. Bottom: The positive tails of 5-min, 20-min,
1-h, 2-h, 4-h, 6-h, 8-h, 1-day returns and standard normal distribution. Returns have fatter tails than normal
distribution (zoomed).

The scaling exponents of USD–DEM returns are outside of the LQevy stable region. The
tails of the distribution decay faster than a LQevy process. This contradiction was also
noted by MGuller et al. [14], who termed them hyperbolic non-stable distributions. The

 value they obtained for several foreign exchange series range from about 3–5. They
showed that the second moment was converging, whereas the fourth moment was not.
The tail index for Swiss Franc (CHF), US Dollar (USD) and British Pound (GBP)
estimated by Schmitt et al. [15] were in the range 3–3.6, which were also larger
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Fig. 4. Top: Cumulative distribution of the positive and negative tails for normalized 5-min returns plotted
in log–log space. The returns are normalized by dividing by the standard deviation of the returns. Both
tails follow power-law with similar scaling exponents. Bottom: Cumulative distribution of the positive and
negative tails for 5-min, 20-min, 1-h, 2-h, 4-h, 6-h, 8-h and 1-day returns (left-to-right) plotted in log–log
space. Both tails at each interval scale as straight lines, except for the daily ones because of the small
amount of data. The straight lines parallel to each other, which suggests that the tails at di8erent intervals
follow the same power-law.

than 2. Liu et al. [16] showed a power-law behavior with exponent 
≈ 3 also held for
both the S&P 500 index and individual companies.
In general, the tails of all possible distributions can be classi?ed into three categories:

1. Thin-tailed distributions for which all moments are ?nite and whose cumulative
distribution function declines exponentially in the tails,
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Table 1
The tail indices and the corresponding bootstrap con?dence intervals of 5-min, 20-min, 1-h, 2-h, 4-h, 6-h,
8-h and 1-day returns

5-min (NT) 5-min (PT) 20-min (NT) 20-min (PT)


̂ 3.0910 3.1020 3.0285 3.0328
CI [3.0824, 3.0984] [3.0959, 3.1092] [3.0092, 3.0497] [3.0161, 3.0501]

1-h (NT) 1-h (PT) 2-h (NT) 2-h (PT)

̂ 2.8777 3.0722 3.2602 3.1640
CI [2.7977, 2.9779] [2.9796, 3.2045] [3.1721, 3.3584] [3.1250, 3.2105]

4-h (NT) 4-h (PT) 6-h (NT) 6-h (PT)

̂ 3.5493 3.4509 3.7506 3.6236
CI [3.4267, 3.6871] [3.3808, 3.5249] [3.5717, 3.9025] [3.5420, 3.7260]

8-h (NT) 8-h (PT) 1-day (NT) 1-day (PT)

̂ 4.1853 3.6890 4.4307 4.0175
CI [3.9835, 4.3844] [3.5508, 3.8362] [4.0081, 4.8112] [3.7372, 4.2737]

The value for the tail index under aggregation is quite stable except for the daily interval where the
number of data points becomes scarce for reliable estimates. NT represents negative tail and PT corresponds
to positive tail. CI is the abbreviation of con?dence interval.

2. Fat-tailed distributions whose cumulative distribution function declines with a power
in the tails, and

3. Thin-tailed distributions with ?nite tails.

These categories can be distinguished by the use of only one parameter, the tail
index 
 with 
=∞ for distributions of category (1), 
¿ 0 for category (2), and

¡ 0 for category (3). The distributions with tail index 
 = ∞ include the normal,
exponential, gamma and log-normal distributions where only the log-normal distribution
has a moderately heavy-tail. The distributions with tail index 
¡ 0 are the thin-tailed
distributions such as uniform and beta distributions which do not have much power in
explaining ?nancial time series.
Tail index 
 gives the critical order of divergence of moments. 
≈ 3 indicates that

USD–DEM returns belong to the class of fat-tailed non-stable distributions which have
a ?nite tail index. The mean and variance are well-de?ned for the returns. The kurtosis
clearly diverges and the behavior of the skewness is not very clear. The distributions of
returns are not normally distributed, but have fat tails. The two tails of the distribution
decay more slowly than a Gaussian. There are more observations far away from the
mean than is the case in a normal distribution. Fat tails imply that extraordinary losses
occur more frequently than in a normal distribution.

2.3. Multifractality

Similarity of some empirical properties of USD–DEM returns at di8erent scales
suggests fractal behavior. Fractals, one of the most useful discoveries in mathematics,
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Fig. 5. The tail indices and the corresponding bootstrap con?dence intervals for the positive tails of 5-min,
20-min, 1-h, 2-h, 4-h, 6-h, 8-h and 1-day returns.

were ?rst introduced into the ?nance area by Mandelbrot. A fractal is an object in
which the parts are in some way related to the whole. Self-similarity, an invariance
with respect to scaling, is an important characteristic of fractals. It means that the object
or process is similar at di8erent scales. Each scale resembles the other scales, but is
not identical. For example, individual branches of a tree are qualitatively self-similar
to the other branches, but each branch is also unique. A self-similar object appears
unchanged after increasing or shrinking its size. A stochastic process is said to be
self-aUne, or self-similar if

{[rt1 ]�; : : : ; [rtk ]�} d={�H [rt1 ]; : : : ; �H [rtk ]} : (3)

The exponent H , called self-aUnity index, or scaling exponent, of [rt], satis?es 0¡H

¡ 1. The operator, d=, indicates that the two probability distributions are equal. It
means that samplings at di8erent intervals yield the same distribution for the process
[rt] subject to a scale factor. Strictly speaking, self-aUnity and self-similarity are not
identical. 5 In this paper the term self-similarity is used.

5 See Mandelbrot et al. [17] for the discussion of the di8erence between self-aUne and self-similarity.
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A self-similar process is also called uniscaling or unifractal. Multifractal (or multi-
scaling) process extends the idea of similarity to allow more general scaling functions.
Multifractality is a form of generalized scaling that includes both extreme variations
and long-memory [15].
As discussed in Mandelbrot et al. [17], a self-similar process satis?es the simple

scaling rule

[rt]�
d=�H [rt] : (4)

If di8erent values of H are found in di8erent intervals, the process is more likely to
be multifractal rather than self-similar. The theory of multifractals examines a more
general relationship

[rt]�
d=�H (�)[rt] ; (5)

where H (�) is a function of �. Multifractality can be understood from di8erent aspects.
Scaling properties in moments of the process are the most common way to study
multifractality. In this paper, the mean moment of absolute returns as a function of
time intervals for di8erent power of absolute returns are examined in order to test the
multifractal properties of USD–DEM returns

E(|[rt]�|q) ∼ c(q)T�(q) ; (6)

where E is the expectation operator, T represents time interval, T = 5�, q is the order
of moments, c(q) and �(q) are both deterministic functions of q. The function �(q)
is called the scaling function of the multifractal process. Unifractal or uniscaling is a
special case of multifractal which has a linear scaling function. Multifractal processes
are characterized by the non-linearity of functions �(q).
To investigate the multifractal properties of USD–DEM returns, the mean moment

of the absolute returns as a function of time intervals for several di8erent values of
q are plotted in a double logarithmic space. Fig. 6 (Top) plots E(|[rt]�|q) against
time intervals for di8erent values of q. The time intervals range from 5 min to one
day. From bottom to top on the graph, the values of q increase from 0.5 to 2.5.
The straight lines in the ?gure indicate that the scaling of Eq. (6) is very well
respected. It shows a power-law scaling with time intervals, that is, the qth mo-
ment of the returns subject to the scaling factor when moving from a high-frequency
interval to low-frequency interval. For example, variance of hourly returns can be
rescaled to variance of daily returns by considering the scaling factor. The moments
show di8erent slopes for di8erent values of q, which suggests di8erent scaling laws
for di8erent order of moments. Slope increases corresponding to an increasing q.
The return process is monofractal if �(q) is a linear function of q and multifrac-
tal if �(q) is nonlinear. In Fig. 6 (Top), the variation of the line’s slope with q
is nonlinear, suggesting multifractal behavior of the return process. To examine the
properties of exponent function, the scaling function is plotted against q (Fig. 6,
Bottom). The nonlinearity of �(q) veri?es that USD–DEM return process is
multifractal.
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Fig. 6. Top: The mean moment of the absolute returns E(|[rt ]�|q) plotted as a function of time intervals
for several di8erent values of q ranging from 0:5 (bottom) to 2.5 (top). In log–log space these appear to
approximate straight lines which suggests a power-law behavior. Slopes are di8erent for di8erent value of q.
Bottom: The estimated scaling exponents of moments plotted as a function of q. Nonlinearity of the scaling
exponent function suggests multifractal behavior.

The nonlinearity of �(q) is tested by plotting E(|[rt]�|q)=E(|[rt]�|)q versus time in-
tervals for several di8erent values of q ranging from 0.5 (bottom) to 4 (top) in a
log–log space. Fig. 7 shows E(|[rt]�|q)=E(|[rt]�|)q is an approximate linear function of
� for q¡ 2. The straight lines which are observed have a slope of �(q)−q�(1). In the
case that �(q) is a linear function of q, the slopes of the straight lines should be 0.
However, if �(q) is nonlinear, a trend should be expected. The graph shows the slopes
of the straight lines are non-zero except for q= 1. When q¡ 1, the slope is positive.
When q¿ 1, negative slopes are observed. Therefore, �(q) is a nonlinear function of
q, which provides further evidence that USD–DEM return process is multifractal.
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Fig. 7. A test of the nonlinearity of �(q). The ratio E(|[rt ]�|q)=E(|[rt ]�|)q plotted as a function of time
intervals for several di8erent values of q ranging from 0.5 (bottom) to 4 (top) in a log–log space. The
approximate straight lines observed have slopes of �(q)− q�(1), which should be zero in case of linearity.
Obviously, the slopes are not zero except when q = 1, suggesting the nonlinearity of �(q). This indicates
USD–DEM returns are multifractal.

3. Conclusions

This paper has investigated the scaling, self-similarity and multifractal properties
of USD–DEM returns. Scaling properties of USD–DEM returns are examined for
the negative and positive tails of returns. Both tails are parallel shifts of each other
over di8erent time intervals, which indicates self-similarity in USD–DEM
returns.
However, USD–DEM returns are not self-similar fractals. Instead, they follow a mul-

tifractal scaling law. The relationship of the mean moment of absolute returns and time
intervals at di8erent orders of moment are examined. The linear relationship between
the mean moments and time intervals indicates the scaling properties of absolute returns.
The nonlinearity of the scaling exponent provides evidence for multifractal properties
of USD–DEM returns.
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