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Abstract. The statistical properties of the Hang Seng index in the Hong Kong stock market are analyzed.
The data include minute by minute records of the Hang Seng index from January 3, 1994 to May 28, 1997.
The probability distribution functions of index returns for the time scales from 1 minute to 128 minutes
are given. The results show that the nature of the stochastic process underlying the time series of the
returns of Hang Seng index cannot be described by the normal distribution. It is more reasonable to model
it by a truncated Lévy distribution with an exponential fall-off in its tails. The scaling of the maximium
value of the probability distribution is studied. Results show that the data are consistent with scaling of
a Lévy distribution. It is observed that in the tail of the distribution, the fall-off deviates from that of a
Lévy stable process and is approximately exponential, especially after removing daily trading pattern from
the data. The daily pattern thus affects strongly the analysis of the asymptotic behavior and scaling of
fluctuation distributions.

PACS. 89.65.Gh Economics, business, and financial markets – 05.40.Fb Random walks and Lévy flights

1 Introduction

Financial markets are typical complex systems in which
the large-scale dynamical properties are dependent on the
evolution of a large number of nonlinear-coupled sub-
systems. Understanding the dynamics of these strongly
fluctuating complex systems is an important scientific
challenge of current interest. Techniques developed in
studying complex physical systems are useful in analyz-
ing financial data. They can yield new and insightful re-
sults. The difficulties in understanding the dynamics of a
financial market come not only from the complexity of the
different elements comprising the systems, but also from
the different ways in which external factors come in. Even
two markets in the same country or within one region,
may behave quite differently. Remarkably, the statistical
properties of certain observables such as the transaction
price, the volume of shares traded, the trading frequency,
and the values of market indices, appear to behave in a
similar way for quite different markets [1,2]. This implies
that there may be some “universal” behavior in financial
markets and some unifying regularities governing complex
economic systems.

A problem of both practical and theoretical interests
concerns the distribution of the variations in share prices
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and the dynamic evolution of the distribution. The index
returns Z(t) are defined as the difference between two suc-
cessive logarithms of the index X(t),

Z(t) ≡ fluc(t) = β{ln[X(t+∆t)]− ln[X(t)]}, (1)

where ∆t is the time interval separating the non-
overlapping index records and β is a magnification factor
included for convenience in displaying figures. For small
changes of X(t), the return is approximately the forward
relative change,

Z(t) ≡ fluc(t) ≈ β[X(t+∆t)−X(t)]/X(t).

The most widely accepted models state that the variation
of share prices is a random process. Investigating the time
series of returns on varying time scales ∆t is useful in
probing the underlying nature of the stochastic process
[3–7].

Bachelier proposed the first model for the stochastic
process of returns [8]. The model describes the variation
of share prices as an uncorrelated random walk with in-
dependent, identically Gaussian distributed random vari-
ables. It is natural if one considers the return over a time
scale to be the result of many independent “shocks”. How-
ever, empirical studies showed that the distribution of the
returns has pronounced tails in striking contrast to that
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Fig. 1. Data analyzed: The Hang Seng index in Hong Kong for the period January 3, 1994 to May 28, 1997 as the function of
time t at intervals of 1 minute. The total trading time includes 190821 minutes.

of the Gaussian distribution. Large events are frequent in
financial data. In his pioneering analysis of cotton prices,
Mandelbrot observed that in addition to being non-
Gaussian, the process of returns shows a time scaling
behavior [9]. He then proposed that the distribution
of returns is consistent with a Lévy stable distribution
[10,11]. In 1995, Mantegna and Stanley analyzed a large
set of data of the S&P500 index. It has been reported that
[3,12–14] the central part of the distribution of S&P 500
returns appears to be well fitted by a Lévy distribution,
but the asymptotic behavior of the distribution shows
faster decay than that predicted by a Lévy distribution.
Hence, it was proposed [3] that a truncated Lévy distri-
bution – a Lévy distribution in the central part follows by
an approximately exponential truncation – is the model
for the return distribution.

In order to probe the extent of universality in the dy-
namics of complex behavior in financial markets and to
provide a basic and appropriate framework for developing
economic models of financial markets, we investigate the
distribution of the fluctuations in the Hang Seng index
– the most important financial index in the Hong Kong
stock market. It is observed that the distribution of re-
turns in the Hang Seng index shows apparent scaling be-
havior, which cannot be modelled by a normal distribu-
tion. The non-Gaussian dynamics of the stochastic process
underlying the time series of returns of the Hang Seng in-
dex, is better modelled by a truncated Lévy distribution.
A power-law behavior is observed for the probability of
zero return for time intervals ∆t spanning at least two
orders of magnitude. However, the power-law fall-off be-
havior in the tails deviate from that of Lévy stable process.
The two tails of the distribution drop more slowly than a

Gaussian, but faster than a Lévy process with an exponent
outside the Lévy stable region. The exponential truncation
ensures the existence of a finite second moment. The ob-
servations are useful for establishing dynamical models of
the Hong Kong stock market.

2 Lévy distribution characteristics and scaling
of index returns

Figure 1 shows the minute-by-minute records of a total
of 838 trading days for the Hang Seng index of the Hong
Kong stock market from January 3, 1994 to May 28, 1997.
The trading time for a trading day in the data was not the
same in the whole period. Although for all trading days,
the Hong Kong stock market opened from 10:00AM to
12:30PM for the morning session, occupying a time in-
terval of 150 minutes and opened from 2:30PM in the
afternoon, the closing times were not the same. For the
period from January 3, 1994 to June 30, 1994, the mar-
ket closed at 3:30PM with the total trading time per day
being 210 minutes. For the period from July 1, 1994 to
August 30, 1995, the market closed at 3:45PM with the
total trading time per day being 225 minutes. For the pe-
riod from September 1, 1995 to December 30, 1996, the
market closed at 3.55PM with the total trading time per
day being 235 minutes. Finally, for the period from Jan-
uary 1, 1997 to May 28, 1997, the market closed at 4:00PM
with the total trading time per day being 240 minutes. We
only count the time during trading hours, and remove the
lunch breaks, evenings, weekends and holidays from the
data set, i.e., the closing time and the time of the opening
of the next session are considered to be neighboring time
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Fig. 2. Time series of 1 minute returns of the Hang Seng in-
dex (1994.1–1997.5). The ordinate is the index returns Z(t) ≡
fluc(t) = β{ln[X(t + ∆t) − ln[X(t)}, where X(t) is the index
at time t, ∆t = 1 min, β = 104 is an amplification factor.

steps. A total trading time of 190821 minutes is consid-
ered and 190821 data points X(t) of the Hang Seng index
are analyzed.

The returns Z(t) of the Hang Seng index (1994.1–
1997.5) defined in equation (1) over a sampling time in-
terval ∆t = 1 minute are shown in Figure 2. One can
see that large events are frequent in the fluctuations of
financial data when compared with a normal process.

In order to characterize quantitatively the observed
process, we plot the probability distribution P (Z) of
the returns over different time scales ∆t. Figure 3a
shows eight distributions of returns with ∆t taking
on ∆t=1, 2, · · · , 64, 128 minutes, respectively in semi-log
scale. The number of data points in each set decreases
from the value of 190820 (for ∆t = 1 minute) to the value
of 1491 (for ∆t = 128 minutes). As expected for a random
process, the distributions are roughly symmetrical with a
wider spread for increasing ∆t. It may also be noted that
the two tails of the distributions are larger than that of a
normal process.

Because larger∆t implies less data points, it is difficult
to determine the parameters characterizing the distribu-
tions only by investigating the spreads. Hence, we stud-
ied [3] the peak values at the center of the distributions,
i.e., the probability of zero return P (Z = 0) as the func-
tion of ∆t. With this choice, we can investigate the point
of each probability distribution which is least affected by
noise. Figure 3b shows P (0) versus ∆t in a log-log plot.
It can be seen that all the data can be well fitted by a
straight line with a slope −0.618±0.025. Thus scaling be-
havior of non-Gaussian process is observed for ∆t from 1
min. to 128 min. This observation agrees with theoretical
model leading to a Lévy distribution.

If we assume that the central part of the distribution
of returns can be described by a Lévy stable symmetrical

distribution with an index α and a parameter γ,

Pα(Z,∆t) ≡ (1/π)
∫ ∞

0

e−γ∆t|q|
α

cos(qZ)dq, (2)

where e−γ∆t|q|
α

is the characteristic function of a Lévy
symmetrical stable process, the probability of zero return
is given by

P (0) = Pα(0,∆t) = Γ (1/α)/[πα(γ∆t)1/α], (3)

where Γ is the Gamma function. Using the value −0.618±
0.025 for the slope of the fitted line to the data (Fig. 3b),
we obtain the index α = 1.619± 0.05.

To check whether the Lévy scaling can be extended to
the entire probability distribution of returns in the Hang
Seng index, we notice that under the transformation:

Zs ≡ Z/[(∆t)1/α]

and

Ps(Zs) ≡ (∆t)1/αPα(Z,∆t) = (∆t)1/αPα[(∆t)1/αZs,∆t],
(4)

the distributions for different time scales ∆t will collapse
onto one curve. Figure 3c shows the re-scaled distributions
for the same data in Figure 3a in the scaled variables,
i.e., Ps(Zs) versus Zs. Data collapse is evident, except
for some data points in the tails for large ∆t. The closer
to the central point Zs = 0, the stronger is the extent
of data collapse. These observations imply that the Lévy
distribution is a better description of the dynamics of the
random process underlying the variation of returns in the
central part of the probability distribution P (Z) over ∆t
spanning at least two orders of magnitude.

3 Removing daily pattern

There exists daily pattern of market activities in large
financial markets [13–18]. A possible explanation for the
daily pattern is the reaction to the information gathered
during the hours when the market is closed, together with
the fact that many liquidity traders are active near the
closing hours [13,14,17]. We observed similar daily pattern
in the absolute changes in the Hang Seng index |Z(t)|.

In order to quantify the correlation in absolute index
changes, it is important to remove this trend. Otherwise
one may find peaks in the power spectrum at the frequen-
cies of 1/day and larger [14].

The intra-day pattern A(tday), where tday denotes the
time in a day, is defined as the average of the absolute
index changes at time tday of a day for all days:

A(tday) ≡
N∑
j=1

|Zj(tday)|/N, (5)

where the index j runs over all the trading days considered
(N = 838). Daily pattern A(tday) for Hang Seng index is
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Fig. 3. Probability distributions of the returns and their scaling behavior. (a): The probability distributions of index returns for
∆t = 1, 2, 4, 8, 16, 32, 64, 128 min. (b): The central peak value P (0) as a function of ∆t. A power-law behavior is observed. The
slope of the best-fit straight line is −0.618±0.025 from which we obtain the scaling exponent α = 1.619±0.05 characterizing the
Lévy distribution. (c): Re-scaled plot of the probability distributions shown in (a). Data collapse is evident after using rescaled
variables with α =1.619. The abscissa is the re-scaled returns, the ordinate is the logarithm of re-scaled probability.
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Fig. 4. 1-minute interval daily pattern for the absolute price changes of the Hang Seng index (1994.1–1997.5). The abscissa
tday is the time within a trading day. The ordinate A(tday) is the average of the absolute index change |Z(tday)| at time tday of
the day for all days.
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Fig. 5. The integrated price changes of Hang Seng index returns (1994.1–1997.5) after removing daily pattern.

shown in Figure 4, which shows an apparent intra-day
oscillating pattern.

Similar pattern has also been observed independently
in reference [19].

In order to remove the effects caused by the daily pat-
tern, we investigate the new returns g(t) defined by

g(t) ≡ Z(t)/A(tday) (6)

instead of the old returns Z(t). The time integration of
the new returns

G(t) =
∫ t

0

g(t′)dt′ (7)

is shown in Figure 5. It can be regarded as a random walk
with steps g(t). Figure 6 shows the central part of the

distributions after removing the daily pattern for the new
returns g(t) for ∆t = 1, 2, 4, · · · , 64, 128 min. Similar to
Figure 3b and c, we may obtain the scaling of the peak
values of the probability distributions with different ∆t as
Figure 3b and achieve data collapse after removal of daily
pattern by properly rescaling the variables.

4 Accumulative distribution and truncated
Lévy scaling

In order to determine if an exponential truncated Lévy
distribution can be used to describe the stochastic
process and to investigate the kind of asymptotic behavior
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Fig. 6. The probability distributions of the returns g(t) over time intervals ∆t= 1, 2, · · · , 128 after removing daily pattern.

outside the Lévy stable region, we study the accumulate
distribution P (g > Z) of the fluctuations of financial data.

For a stable symmetric Lévy distribution (0 < α < 2),
the two tails show a power-law asymptotic behavior

P (Z) ∼ Z−(1+α), (8)

and hence the second moment diverges. This leads to an
asymptotic power-law for the accumulate distribution for
both the positive and negative tails [13] in the form

P (g > Z) ∼ Z−α (9)

Figure 7 shows the accumulate probability distribution of
returns P (g > Z) for ∆t = 1 min. for the Hang Seng
index before and after the removal of daily pattern. For
data in the region 10 ≤ Z ≤ 200 before removing daily
pattern, regression fits yield α = 2.32 (positive tail) and
α = 2.22 (negative tail). These results appear to be out-
side the Lévy stable range of 0 < α < 2. For the data
in the region 3 ≤ Z ≤ 15 after removing daily pattern,
regression fits yield α = 5.0 (positive tail) and α = 4.0
(negative tail). These results are further outside the Lévy
stable range when compared with those before the daily
pattern is removed.

From the above analysis, we conclude that after re-
moving the daily pattern, the two tails in the distribution
of the returns in the Hang Seng index fall-off with an ex-
ponent well outside the Lévy stable range. The asymptotic
behavior of the stochastic process underlying the fluctu-
ations in the Hang Seng index are quite different before
and after removing daily pattern. Removing daily pattern
is equivalent to decreasing the fluctuations, which leads
to a stronger confinement and so makes the second mo-
ment of the distribution finite. Thus, the scaling exponent
of the asymptotic distribution deviates further from the
Lévy stable range. It is therefore important to remove the
daily pattern in analyzing the asymptotic behavior of fluc-
tuation distribution.
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Fig. 7. The accumulate probability distributions P (g > Z)
of 1-minute returns for Hang Seng index before and after re-
moving daily pattern. For data before removing daily pattern,
regression fits in the region 10 ≤ Z ≤ 200 yield α = 2.32
(positive tail) and α = 2.22 (negative tail). For the data after
removing daily pattern, regression fits in the region 3 ≤ Z ≤ 15
yield α = 5.0 (positive tail) and α = 4.0 (negative tail).
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