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Abstract

It has been recently noticed that time series of returns in stock markets are of multifractal
(multiscaling) character. In that context, multifractality has been always evidenced by its statis-
tical signature (i.e., the scaling exponents associated to a related variable). However, a direct
geometrical framework, much more revealing about the underlying dynamics, is possible. In this
paper, we present the techniques allowing the multifractal decomposition. We will show that
there exists a particular fractal component, the most singular manifold (MSM), which contains
the relevant information about the dynamics of the series: it is possible to reconstruct the series
(at a given precision) from the MSM. We analyze the dynamics of the MSM, which shows
revealing features about the evolution of this type of series.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The analysis of @nancial time series has been the focus of intense research by the
physics community in the last years [1,2]. The aim is to characterize the statistical
properties of the series with the hope that a better understanding of the underlying
stochastic dynamics could provide useful information to create new models able to
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reproduce experimental facts. In a further step such knowledge might be crucial to
tackle relevant problems in @nance such as risk management or the design of optimal
portfolios, just to cite some examples.
Another important aspect concerns concepts as scaling and the scale invariance of

return Iuctuations [3,4]. There is an important volume of data and studies showing
self-similarity at short time scales and an apparent breakdown for longer times mod-
eled in terms of distributions with truncated tails. Recent studies have shown that the
traditional approach based on a Brownian motion picture [5,6] or other more elaborated
descriptions such as Levy and truncated Levy distributions [2], all of them relying on
the idea of additive process, are not suitable to properly describe the statistical features
of these Iuctuations. In this sense, there are more and more evidences that a multi-
plicative process approach is the correct way to proceed and this line of thought leads
in a natural way to multifractality. In fact, this idea was already suggested some years
ago when intermittency phenomena in return Iuctuations was observed at diDerent time
scales which gave rise to some eDorts to establish a link with other areas of physics
such as turbulence [7,8]. Nowadays, we know that there are important diDerences
between both systems, as for instance the spectrum of frequencies, but the comparison
triggered an intense analysis of the existing data. The multifractal approach has been
successful to describe foreign exchange markets as well as stock markets [9].
Multifractal analysis of a set of data can be performed in two diDerent ways, ana-

lyzing either the statistics or the geometry. A statistical approach consists of de@ning
an appropriate intensive variable depending on a resolution parameter, then its sta-
tistical moments are calculated by averaging over an ensemble of realizations and at
random base points. It is said that the variable is multifractal if those moments ex-
hibit a power-law dependence in the resolution parameter [10]. On the other hand,
geometrical approaches try to assess a local power-law dependency on the resolu-
tion parameter for the same intensive variables at every particular point (which is a
stronger statement that just requiring some averages—the moments—to follow a power
law).
While the geometrical approach is informative about the spatial localization of self-

similar (fractal) structures, it has been much less used because of the greater technical
diKculty to retrieve the correct scaling exponents. However, in the latest years an
important eDort to improve geometrical techniques has been carried out, giving sensible
improvement and good performance [11,12]. We will apply the geometrical approach
in this paper as a valuable tool for the understanding of the geometry and dynamics
of stock market time series.
The paper is organized as follows: in Section 2 the data are presented; then, Section 3

is devoted to the introduction of geometrical techniques; results of its application to our
data are also shown. Section 4 provides an interpretation of the particular multifractals
observed in the price series; we will see that those multifractals can be reconstructed
from the information conveyed by a single fractal component. We apply the theory
to our context and extract valuable conclusions about dynamics. A simple model for
that dynamics is presented in Section 5, while the stability of the model with the
observed data is discussed in Section 6. The conclusions of our work are then issued in
Section 7.
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Fig. 1. Ten-year daily series of the log of prices for Telef)onica (TEF).

2. Settings

We have processed two diDerent kind of data belonging to the Spanish stock market
(IBEX) which correspond to well diDerent time scales. The @rst group is formed by
daily series of 17 diDerent assets (those with the largest liquidity) during approximately
ten years (from January 1st, 1990 to May 24th, 2001) containing 48458 points. The
second group consists of 12 month series (during 1999) for the 4 most important
assets of the market, also included in Euro Stoxx 50, each series being sampled at a
time interval of one minute containing 275477 points. For this group, there are clear,
systematic disruptions at precise moments such as the opening of the local market or
the opening of NY market (3:30 p.m. local hour), for instance. In spite of the fact
that those events elicit statistical deviations from the multifractal model, they do not
aDect signi@cantly to our calculations due to the high sampling rate. For that reason
we do not try to correct the systematic deviations by any mean, performing the same
analysis for the two groups. In the same spirit, we always identify the ending of a
session as the instant just preceding the opening of the following, no matter the actual
time interval between them (sometimes several non-working days) for both types of
series. Examples of series of the two types are shown in Figs. 1 and 2.
We are interested in relative variations of the price, i.e., the ratio of the absolute

value to the absolute variation. For that reason, we will work on series formed by
logarithms of prices. In such a way, the absolute variation between two consecutive
instants (approximately, the derivative with respect to time) for this series approximates
the relative variation for the original stock series.

3. Multifractal analysis

3.1. Singularity analysis

Self-similar (or multifractal) signals are usually characterized by a very irregular
behaviour: at some point they show very abrupt transitions while in points nearby the
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Fig. 2. November 1999 minute series of the log of prices for Telef)onica (TEF).

function behaves rather smoothly. Such systems are also scale invariant, what means
that no statistical variable can depend on an inner scale: the process should seem
the same when a change in scale is performed. Combining both principles (irregular
distribution of transitions, scale invariance) it should be expected that the series s(t)
can be expanded around a given instant t0 as:

|s(t)− s(t0)| ∼ |t − t0|�0 : (1)

The exponent �0 is the so called singularity exponent or HNolder exponent [13] associ-
ated to t0. Eq. (1) is of course scale invariant, and the smooth or irregular character of
the transition at t0 depends on value of �0. The greater the exponent, the most regular
the signal will be at that point.
It is expected that the value of the singularity exponents associated to the diDerent

instants vary greatly, in order to give account of the irregular nature of the series. To
describe the series, it would be then convenient to calculate the singularity exponents
at every time t, that is, to perform a singularity analysis of the series. The naif way
to proceed is to test Eq. (1) at every time t0 and to calculate the function �(t0)
of singularity exponents. Singularity analysis thus generalizes the concept of Taylor
expansion for irregular, chaotic signals.
Such a simple singularity analysis is rather standard in the study of turbulent Iows,

and it has been used in diDerent studies of stock market series as well as in Ref. [10].
However that de@nition of singularity exponent (Eq. (1)) is not well adapted for signals
with constant contributions to the two-point correlation. This is the case for intermittent,
locally non-stationary signals, in which Iuctuations are long lived [14]. In that case, the
lack of stationarity masks the presence of positive singularity exponents, making them
impossible to detect. There are two possibilities to overcome this diKculty: to build a
stationary measure (as in Ref. [15]) or to project the signal over a wavelet basis (as
in Ref. [16]). We will apply both techniques: the @rst, to create a stationary signal;
the second, to provide a smooth way to interpolate data over discretized sampling.
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It is well known in stock market series that price Iuctuations are correlated only
over very small time windows, while their absolute values correlate over very large
time intervals with power law distribution [17,18]. Having this in mind, a stationary,
power-law correlated measure can be de@ned from the absolute value of the variations
of the series. The measure � of an interval [t; t′] is given by

�([t; t′]) ≡
∫ t′

t
d�|s′|(�) (2)

where s′(t) is the derivative of s(t) with respect to t. This measure accumulates the
absolute variations of the series over the given interval, so giving an idea of its irregu-
larity. As absolute Iuctuations are power-law correlated, it is reasonable to expect that
the measure depends as a power law in the size of the time window [10,11]. Singular-
ity analysis can be performed now by computing the singularity exponents associated
to this measure at any time t.
Systematic singularity analysis leads to the classi@cation of points according to the

value of the singularity exponents. Such a classi@cation splits series in diDerent invariant
sets of fractal nature, and for that reason we speak about multifractality. We de@ne
here multifractal measures and we will discuss later the classi@cation scheme. We will
say that � is multifractal if at any time t0 there exists a singularity exponent h0 such
that:

�([t0 −Ot; t0 + Ot]) ∼ Oth0+1 (3)

for sizes Ot small enough. The parameter Ot plays the role of a resolution parameter:
only relevant details at that temporal extent are detected. According to Eq. (3), a
multifractal measure has an associated singularity exponent at every point. As before,
we expect the singularity exponent to change from one instant to another.
It is important to remark the structure of the measure given previously. The exponent

is a sum of two terms: the dimension of the space, that for the time series discussed
in this paper equals 1 (time), and the singularity exponent which is independent of
dimensional considerations. By operating in this manner we can separate both contri-
butions in a systematic way which is very convenient to deal with physical systems in
diDerent dimensions. Since the measure is a quantity with physical meaning, we expect
to @nd h(x)¿− 1 to ensure continuity and avoid any divergence.
Over experimentally sampled data, Eq. (3) is very crude and poorly operative to

check multifractality. Singularity analysis is then usually done by means of an appro-
priate interpolation technique: that of wavelet projections. Given a wavelet � (that is,
a function verifying some appropriate conditions), the wavelet projection of � at t0 and
scale Ot (denoted T��(t0;Ot)) is de@ned as

T��(t0;Ot) ≡
∫

d�|s′|(�) 1
Ot
�

(
t0 − �
Ot

)
: (4)

The measure � is multifractal (in the sense of Eq. (3)) if and only if the wavelet
projections over a properly chosen wavelet � at a given time t0 verify:

|T��(t0;Ot)| ∼ Oth0 (5)
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with exactly the same exponent [12,13] h0 as in Eq. (3). 2 Wavelets are necessary to
provide a smooth interpolation over discretized data and to improve the assess of the
local behaviour in real, experimental situations. 3

3.2. Multifractal decomposition

Once singularity exponents at every time t are known (which we will represent by
the function h(t), that is, T��(t;Ot) ∼ Oth(t)) it is possible to classify points according
to common values of the exponents. We de@ne the fractal component Fh associated to
the singularity exponent h as the set of points verifying:

Fh ≡ {h(t) = h} : (6)

Fractal components arrange together those points sharing the same scale invariance
properties (the same scaling exponent). This multifractal decomposition provides a
natural hierarchy for the series which is reIected on its statistical properties. Due to
the irregular, chaotic character of the series, the sets Fh are truly fractal in nature
(that is, they have non-trivial fractal dimensions). The geometry of those sets is rather
informative about the underlying dynamics driving the series, as their arrangement is
quite structured and highly non-trivial (we will return to that question in Section 4).
An important quantity in multifractals is the function de@ned by the dimension of each
fractal component. The singularity spectrum D(h) of the multifractal is de@ned as the
function given by the Haussdorf (or fractal) dimension of the component Fh,

D(h) ≡ dim Fh : (7)

The singularity spectrum plays a crucial role in relating geometry (multifractal de-
composition) and statistics (self-similar properties as those studied in Ref. [10]): the
statistical self-similar exponents are obtained by a Legendre transform of the singu-
larity spectrum [21]. In that way, the geometry of such chaotic series is reIected
in a power-law behaviour of the distribution of certain variables. The two concepts
(geometry and statistics) are so intimately related that it is usual to talk about multi-
fractality when just the statistical analysis has been performed. We will show that the
geometrical approach provides a more precise picture of the dynamics of the series.
For a discussion of the connection between the statistical and geometrical approaches,
the reader is referred to Ref. [10] in the context of stock market time series, and to
Ref. [11] for a more general analysis.

2 As a matter of fact, the exponent h0 is not independent of the exponent �0 in Eq. (1) in the cases in
which the later makes sense: it can be proven that �0 = h0 + 1 [12].

3 Wavelet projections also allow removing constant correlations: if a certain order of moments of the
wavelet � vanish, it could be used to directly analyze the series s instead of the measure � [12,19,20].
The drawback of such wavelets lies in that fact that they possess a complicated structure of zero-crossings,
so the minimum resolution at which they can be used over a discretized sample is of the size of several
sampling points. For that reason we have preferred working on the measure � and using less structured,
@ner resolving wavelets.
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Fig. 3. Function h(t) for Telef)onica daily series (Fig. 1). It is strongly irregular. Theory predicts that it is
everywhere discontinuous [12], what is connected with the fact that its level sets (the fractal components)
are of non-trivial fractal dimensions. The total discontinuity of h(t) makes the fractal components to be
strongly spatially correlated (randomly placed singularities would lead to some continuity points). For that
reason, contrary to intuition multifractal series are quite structured.

3.3. Experimental results

All the series were analyzed using several wavelets from the Laplacian family,
��(t) = (1 + t2)−�, with � = 1; 1:5; 2. Such functions are not admissible wavelets,
that is, they cannot be used to represent any particular series [13]; they can be used
however to perform singularity analysis on positive multifractal measures [12]. Those
particular wavelets provide a @ne spatial localization at the cost of restricting the range
of singularities which is possible to detect. Those functions are able to resolve all the
eDective range of singularities in log-Poisson multifractals, which is the case of the
analyzed series (we will discuss log-Poisson multifractals in Section 4). The exponent
h(t) at every time t was computed as the slope of a log-log linear regression of the
absolute value of the wavelet projection vs. the resolution Ot (see Eq. (5)), for reso-
lutions continuously sampled in the interval [1; 3] (here the units are tics, i.e., number
of points). In all the stock market series, for a vast majority of the points (¿ 99%)
the linear regression exhibited good regression coeKcient (absolute value above 0.9),
validating the multifractal framework. For details on wavelet singularity analysis the
reader is referred to Ref. [12] and references therein.
The results obtained with the diDerent wavelets are comparable. In Fig. 3 we show

a typical exponent function h(t); as it is clearly seen, it is extremely irregular, chaotic
in behaviour. It is thus not so surprising that the diDerent fractal components are
truly fractal in character. We had not tried to provide a representation of each fractal
component, as they have a very complicated structure, diKcult to decipher from a
simple plot.
The experimental distribution of singularities showed that the possible values for the

singularity exponents were in all the cases contained in a range included in [−1; 2] (see
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Fig. 4. Experimental distribution of h for Telef)onica daily series.

Fig. 4). There always existed a non-trivial, minimum value h∞ verifying −1¡h∞¡ 0,
as we expected. The existence of a @nite lower bound in h is not surprising: the range
of possible singularities is always bounded from below for @nite variation series (that
is, the series can be discontinuous, but not too sharply; see Ref. [12] for a discussion).
The range of singularities is not a priori bounded from above however, but in the
experimental results it turned out to be so.

3.4. Log-normal vs. log-Poisson statistics

The observed distribution of singularity exponents @ts the log-Poisson model; on the
contrary, it is incompatible with the log-normal model. Why? Because in the log-normal
model the singularity exponents h are not bounded, neither from above nor from below.
In Fig. 5 we show a typical log-normal series. It was generated using the model pre-
sented in Ref. [22], and the parameters were chosen to have a regular power spectrum
and a reasonable dispersion. As it can be observed in Fig. 5, log-normal series have
sudden bursts which are extremely singular, but at the same time they are rather scarce
(they correspond to events in the negative tail of the distribution of singularities). It
is clear however from simple visual inspection that such a series does not resemble a
real one due precisely to those unbounded bursts. The frequency of them is controlled
by the dispersion of the gaussian, but they will eventually happen for a large enough
data set.
This discrepancy with the behaviour of real series is also evidenced when the

series is analyzed using the geometrical approach. In Fig. 6 we present the distribution
of singularity exponents associated to the log-normal series in Fig. 5. It assigns a
non-null probability to extremely negative singularity exponents (which correspond to
the bursts), which is physically unreasonable but characteristic of an unbounded dis-
tribution of singularities as the log-normal one. In contrast, singularities in real data
are bounded, in agreement with the log-Poisson model. This boundness does not mean
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Fig. 5. A typical log-normal series. It was generated using the model in Ref. [22]. The coeKcients @t a
log-normal of log-mean 0, and log-dispersion 0.5. The series contains 16384 points, and the basis wavelet
is the second derivative of the gaussian.

Fig. 6. Experimental distribution of h for the log normal series represented in Fig. 5.

that the series is bounded (it could grow forever, for instance), but that there is no
jump to in@nity at any point.
However, multifractal stock series are quite often described in the scienti@c litera-

ture using log-normal statistics (for instance, in Ref. [23]). In such works the authors
estimate the statistical self-similarity exponents from the data and make a quadratic @t
(which corresponds to log-normal statistics) for some low-order moments. Finer analy-
sis, as the one shown in Ref. [10], show a considerable deviation from the log-normal
model for larger moments (which are precisely the ones dominated by the most sin-
gular exponents). What actually happens is that log-Poisson is indeed approximated
in law by a log-normal as a consequence of Central Limit Theorem when the scale
change is large enough. But as this approximation is granted in law, just the most



638 A. Turiel, C.J. P6erez-Vicente / Physica A 322 (2003) 629–649

probable events are approximately equally distributed as in a log-normal model, while
rare events (and specially the most singular events) are poorly described. Depending
on the application, a log-normal model could be a good approximation or a very poor
one. We will see in the following that in a geometrical picture it is precisely those
rare events which allow to describe the whole series, and for that reason log-normal
models are of no use in our context.

4. MSM and reconstruction

4.1. Theoretical background

Log-Poisson models are characterized by a very simple statistical feature: when an
in@nitesimally small change of scale takes place, just two events can happen: either the
random variable changes smoothly or it undergoes a sudden change. The last possibility
is interpreted as the crossing of one particular fractal component which concentrates
the energy dissipation (in the case of turbulent Iows) of the multifractal. A complete
discussion about the statistics of log-Poisson multifractals and its interpretations would
be quite extensive and somewhat pointless to be carried out here; the reader is referred
to the wide bibliography on the subject. Let us cite here the basic works introducing
the model and discussing its properties for turbulent Iows [24–27]. For a discus-
sion of the interplay between statistics and geometry and the relevance of log-Poisson
statistics for multifractal decomposition, we refer to Ref. [12], in which the main ques-
tions are reviewed in a quite diDerent context of application (the statistics of natural
images).
According to Ref. [12], in log-Poisson multifractals there is a particular fractal com-

ponent of maximum information content, the so called Most Singular Manifold (MSM).
Log-Poisson statistics of changes in scale are characterized by the event of crossing
or not that particular set. The MSM is de@ned as the fractal component associated
to the least possible exponent h∞ (that as we have seen veri@es −1¡h∞¡ 0 for
@nite variation signals). We will denote shortly the MSM by F∞ ≡ Fh∞ . Due to the
statistical interpretation of the MSM, in Ref. [28] it was proposed that a multifractal
signal could be reconstructed from the values of the gradient over the MSM; as an
hypothesis, it was stated that reconstruction is performed by means of a linear kernel.
The kernel was uniquely determined under several reasonable requirements (isotropy,
translational invariance and correspondence with the experimental power spectrum).
We do not present here the whole derivation but the @nal expression; the reader is
referred to the original paper. We will make use of the @nal formula to generalize it
to the context of 1D series.
Let us start by de@ning the essential data needed to reconstruct. We will consider

now a multifractal signal s de@ned over a multidimensional space, the points being
identi@ed by their vector coordinates x̃. Hence, the signal will be given by the function
s(̃x). The multifractal measure � is de@ned as the integral of |∇s|(̃x), the modulus of
the gradient, over the measured sets. The test of multifractality and singularity detection
are carried out analogously to what was done for 1D signals. Let us de@ne the essential
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gradient @eld,

ṽ(̃x) ≡ ∇s(̃x)�F∞ (̃x) ; (8)

where �F∞ (̃x) is a delta-like function constant over the MSM F∞ and vanishing outside
that set. So, ṽ contains all the information (geometry of the MSM and value of the
measure over it) which we need to reconstruct, according to what is discussed in
Ref. [28]. As it is shown in that reference, the signal can be reconstructed using the
following formula (expressed in the Fourier space):

ŝ(f̃) = i
f̃ · ˆ̃v(f̃)
f2 ; (9)

where hat (ˆ) denotes Fourier transform, f̃ is the frequency variable in the Fourier
domain, i is the imaginary unit and the symbol “ · ” means scalar product of vectors.
Let us notice that this formula has an interesting stability property: if we choose as
F∞ the total space, then ṽ =∇s, that is, ˆ̃v(f̃) = −if̃ŝ(f̃); substituting in Eq. (9) we
see that the equality is trivially satis@ed. This means that there always exists a set
(in the worst case, the whole space) from which reconstruction is perfect. A signal is
reconstructible if there exists a smaller, rather sparse set F∞ from which reconstruction
is possible; or conversely, points not in F∞ are predictable from those in F∞.
The 1=f2 factor in Eq. (9) creates a diDusion eDect for signals in dimensions

greater than 1, as this is the Fourier representation of a Green function associated
to the Laplacian operator. A strong simpli@cation appears when Eq. (9) is applied to
one-dimensional signals; then it reduces to:

ŝ(f) = i
v̂(f)
f

: (10)

But i=f is a representation of the inde@nite integral, 4 that is, an inverse of the deriva-
tive (as ŝ′(f) =−ifŝ(f)). So the reconstruction formula in 1D becomes:

s(t) = s(0) +
∫ t

0
d� v(�) : (11)

Let us make a few remarks on this formula. First, it has obviously the aforementioned
stability property: if F∞ is taken as the whole interval the formula is a trivial identity,
as v(t) becomes s′(t) in such a case. Also, recalling that v(t) = s′(t)�F∞(t) we see
that the weight of this function is concentrated in point-like contributions, in the points
belonging to the MSM. For that reason, the series s(t) obtained according to Eq. (11)
is piecewise constant, undergoing a change on its value when a point of the MSM is
crossed.
Secondly, let us notice that Eq. (11) does not imply that s′(t) = 0 for t 	∈ F∞. For

continuous, ideal series, F∞ is a dense set; therefore at any time t and any size � there

4 In the original derivation, the signal s had zero-mean to avoid divergence at zero frequency in Eq. (9);
for that reason the ambiguity in the choice of the constant is removed. In principle we assume that the
integral of s over the considered time window is zero, what eliminates the ambiguity in the choice of the
inde@nite integral. We can change the convention to determine this constant, keeping consistency; in fact
we have done it in Eq. (11) by adding the term s(0).
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are points belonging to the MSM in (t− �; t+ �), and so
∫ t+�
t−� d� v(�) is non-vanishing

in general. It follows that the derivative of the series s(t) given in Eq. (11) can be
diDerent from zero even at t 	∈ F∞.
On the contrary, over real, discretized data there is necessarily a loss in resolution:

the integral in Eq. (11) becomes a sum and the derivative is turned into the subtraction
of consecutive values; hence, the only points which can be removed in the sequence are
those for which s′(t)= 0 strictly. However, at a given level of detail some points may
be discarded without causing a great deviation between the reconstructed series and the
real one. These points are obviously those for which the derivative is very small, but
also other points in which the variations (derivatives) are signi@cant but immediately
compensated by changes of the opposite sign and similar absolute value. The key
point is not the absolute value of the variations, but the resolution at which the series
is described: signi@cant variations are those which are large enough in comparison
with those of the points nearby. At a given resolution, there will be an optimal set
consisting of the points with the most signi@cant changes. In fact, it is logical that the
MSM could be identi@ed with that set: it contains the points with the most negative
exponents, that is, the points over which the transition (variation) is the sharpest. For
those points the derivative is signi@cantly greater than over the surrounding points (we
will see in the following that the reconstruction out the MSM is rather good).
Determining the MSM is a rather standard procedure, much better than trying to

assess by other means which points could be discarded when reconstructing. Calcu-
lating singularity exponents allows classifying the points according to the strength of
the transition the series undergoes at them, giving a reasonable criterion to include
or discard points in the MSM at a given precision, depending on the uncertainty or
dispersion on the value h∞. We will then use the MSM as minimum reconstructing
set.

4.2. Experimental results and discussion

In Fig. 7 we represent the reconstructed series for one daily and one minute sampling
series; other series threw very similar results. In each case the MSM was determined via
wavelet analysis as explained in Section 3; the MSMs were chosen as h∞=−0:40±0:3
(daily series) and h∞ = −0:45 ± 0:3 (minute series). The central value of h∞ was
determined as the average of the points associated to the 1% and the 5% left tails of
the probability distribution of singularities h, as in Ref. [12]. The uncertainty range
(±0:3) was conventionally @xed in such a way that the quality of the reconstruction
was reasonable enough. As it is seen in Fig. 7 the quality of the reconstruction is very
good. According to Eq. (11), the @rst point in the series has zero error and starting from
it the error accumulates as time passes; for that reason the last point in the series is
necessarily the worst predicted (in average). It is reasonable to proceed in such a way,
as we deal with time series and one of the goals of this study is to make predictions
and Iuctuation estimation. Notice that the shape of the series is well captured by the
reconstructed estimates, and errors mainly accumulate during very sharp transitions
(specially for the periodic disruptions in minute series) which probably constitute a
deviation from the multifractal description and should be treated separately. In spite
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Fig. 7. Original (+) and reconstructed (×) (out the MSM) series for the daily series of Telef)onica (left;
PSNR for the reconstructed series: 27:86 dB) and for the 1-min series (right; PSNR: 24:64 dB).

Fig. 8. Original (+) and reconstructed (×) (out a uniform sampling) series for Telef)onica: daily (left; PSNR:
14:24 dB) and 1-min (right; PSNR: 12:03 dB).

of the presence of disruptive points in minute series, the reconstructed series provides
good approximation. This is due to the fact that during a short period after a disruptive
event (for instance, opening of NY market) the variations are larger than typical, but
they keep however the same multifractal arrangement, the MSM being still predictive.
Just the very @rst instants fail to be described in the multifractal picture, and they are
quite few. For that reason the present description is still valid in a good extent.
For the chosen quantization in h∞ (±0:3), the density �∞ of the MSM was always

rather high (�∞ = 0:30 for the daily series, �∞ = 0:29 for the minute series). It could
seem that the high quality of the reconstruction is just a consequence of the high value
of the density for the MSM; however, if we replace the MSM in the reconstruction
formula by uniform or random samplings with the same density, the quality is much
lower (see Figs. 8 and 9). This fact shows that the MSM has a large information
content. Besides, the series obtained for those non-structured samplings have not a
well de@ned tendency (they are not clearly, or not as much as the original series,
increasing or decreasing). This implies that positive and negative variations are almost
equally likely in price series: they are continuously oscillating. But, what is more
surprising, the distributions of absolute values for positive and negative increments are
quite similar. How to explain the tendency in the series?
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Fig. 9. Original (+) and reconstructed (×) (out a random sampling) series for Telef)onica: daily (left; PSNR:
12:09 dB) and 1-min (right; PSNR: 10:50 dB).

Tendency changes just take place over the MSM, which is quite reduced in com-
parison to the total amount of points. Over the MSM, the distributions of positive and
negative increments are still quite similar. However, the amount of positive increments
is greater (vs. smaller) than that of the negative ones for increasing (vs. decreasing)
series; they are of the same order for no tendency series. For that reason, what de-
termines the tendency of the series is not the absolute values of its increments, but
the diDerence in number of positive and negative increments over the MSM. It is now
obvious that tendency is diKcult to assess with a sampling independent of the MSM.
For instance, a random or uniform sampling of the whole series at 0.30 density would
just sample 30% of MSM points, giving rise to a series with 30% as much tendency
as the original one. To end the discussion, just remark that the characterization of the
MSM as the set of tendency points is another way to express that MSM points are
the most singular, the most signi@cant with respect to their surroundings. Points out-
side the MSM are surrounded by similar, opposed tendency points, giving rise to a
vanishing change in tendency.
We have shown that the MSM plays a fundamental role in the dynamics of the

temporal series; ideally the series is fully described using this skeleton, this essential
set. According to the reconstruction formula, Eq. (11), and the de@nition of the essential
gradient, Eq. (8) (for 1D in our case), there are two diDerent types of information which
are needed to reconstruct, namely the geometry of the MSM (given by �F∞(t)) and
the values of the derivative s′ on MSM. In the next section we will try to describe the
dynamics governing the geometrical arrangement of the MSM; we leave the study of
the intensities of the derivatives for a future work.

5. Dynamics on the MSM

Let us @rst de@ne the MSM oriented density function, �oF∞(t), which is given by:

�oF∞(t) =



�F∞(t) if t ∈F∞; s′(t)¿ 0 ;

−�F∞(t) if t ∈F∞; s′(t)¡ 0 ;

0 if t 	∈ F∞ :

(12)
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So the oriented density function keeps the sign of the derivative on the MSM. This
function keeps the information about the geometry of the MSM (as |�0F∞ |= �F∞), and
at the same time it already incorporates some basic information about the derivative
(its sign). This sign weighting is necessary to allow the possibility of cancellations
when resolution is changed. Besides, as it was discussed in the previous section, the
proportion of signs determines the tendency of the series. 5 In some sense, the function
�oF∞ de@nes a naif series in which every event (non-zero value) means a relative change
in the price of shares of the same absolute value. For that reason, a good understanding
of the dynamics of this function could be useful to device a naif sell-buy model capable
to produce correct multifractal exponents (that is, the statistics of changes in scale).
For this analysis, we took averages over the two ensembles of data, assuming mutual
statistical consistency among the diDerent series they consisted of.
We tried @rst to identify two-point dependencies in �oF∞ . We computed the mutual

information between �oF∞(t) and �oF∞(t + �) for diDerent time delays �; assuming sta-
tionary statistics we disregard the basis points t. The generic value of �oF∞(t) at any
point will be denoted by �, which can take the values −1, 1 or 0, depending if t
belongs to the MSM with negative derivative, if t belongs to the MSM with positive
derivative, or if t does not belong to the MSM, respectively. We adopt the following
convention: a subscript � associated to a state � (i.e., ��) indicates that the state takes
place at a point which is displaced � units with respect to a generic base point. We
calculated the two-point joint probability as

P(�0; ��) = 〈Prob(�oF∞(t) = �0; �oF∞(t + �) = ��)〉t (13)

and the marginal probability as

P(�) =
〈
Prob(�oF∞(t) = �)

〉
t = 〈P(�; ��)〉�� for any �� : (14)

The mutual information between the points of the oriented MSM I� is then given by

I� =
∑

�0=−1;0;1

∑
��=−1;0;1

P(�0; ��) log2
P(�0; ��)
P(�0)P(��)

(15)

that is, the Kullback distance between the joint probability P(�0; ��) and the product of
the marginal probabilities P(�0)P(��) [29]; it is expressed in bits. It equals the entropy
when the two variables are identical and vanishes only when they are independent; for
that reason it is a good measure of statistical dependency. In Fig. 10 we present the
graphs of I� for both ensembles.
Results for both ensembles are comparable. The mutual information I� decays

extremely fast with the time displacement �, so that at three time units of distance
it is already negligible (comparable with the sampling uncertainty). This means that
points in the MSM separated by such a distance can be considered independent. We
would like to provide a stationary random process able to describe correctly this
behaviour.

5 In fact the oriented density possesses stronger features: it de@nes (via the reconstruction formula) a
multifractal series with the same singularity exponents as the original series. Its analysis will deserve future
works.
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Fig. 10. Mutual information I� in semi-log plot for daily ensemble (continuous line) and 1-min ensemble
(dashed).

We propose that the joint probability P(�0; ��) is obtained by � successive appli-
cations of an elementary transition matrix T on P(�0) (in fact this means that the
random process is a Markov chain). In this model long range dependencies are a con-
sequence of successive one-unit dependencies. Let us use P(�0; �2) as an example. We
can express it as

P(�0; �2) = P(�2|�0)P(�0) ; (16)

where P(��|�0) stands for the conditional probability of obtaining the state �� at the
point at � units of distance once the state at the base point is @xed to �0. Let us expand
the conditional probability in terms of the intermediate state �1; we obtain:

P(�0; �2) =
∑
�1

P(�2; �1|�0)P(�0) : (17)

Conditioning with respect to �1 it is obtained:

P(�0; �2) =
∑
�1

P(�2|�1; �0)P(�1|�0)P(�0) : (18)

We assume that the random process is a stationary Markov chain, what means
P(�2|�1; �0) = P(�2|�1). Applying it to the previous expression:

P(�0; �2) =
∑
�1

P(�2|�1)P(�1|�0)P(�0) (19)

and comparing with Eq. (16) we obtain the @nal formula for the random process:

P(�2|�0) =
∑
�1

P(�2|�1)P(�1|�0) (20)

that is, P(�2|�0) is obtained by two applications of the random process described by
P(�1|�0). Let us introduce a matricial notation. We will represent the random process
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Table 1
P(�) for daily ensemble. As P(� = +1)¿P(� =−1) the series exhibit an increasing tendency

� = 0 � = 1 � =−1

P 0.71 0.16 0.13

Table 2
Transition matrix T for daily ensemble

�1 = 0 �1 = 1 �1 =−1

�0 = 0 0.77 0.12 0.11
�0 = 1 0.54 0.43 0.03
�0 =−1 0.57 0.05 0.38

Table 3
P(�0; �2) for daily ensemble

�1 = 0 �1 = 1 �1 =−1

Theoretical (according to Eq. (19))
�0 = 0 0.51 0.11 0.09
�0 = 1 0.11 0.04 0.01
�0 =−1 0.09 0.01 0.03

Experimental
�0 = 0 0.49 0.12 0.09
�0 = 1 0.12 0.04 0.01
�0 =−1 0.09 0.01 0.03

by a 3× 3 matrix given by

T=



t00 t0+ t0−

t+0 t++ t+−

t−0 t−+ t−−


 (21)

where t�1�0 ≡ P(�1|�0). The matrix T de@nes the random process. With this notation
Eq. (20) can be rewritten as:

P(�2|�0) =
∑
�1

t�2�1 t�1�0 = T2
�2�0 (22)

that is, the conditional distribution P(�2|�0) is given by the square of the matrix T. In
general we obtain that at � time units the matrix T� is applied.

To test our hypothesis, we have compared the experimental P(�0; �2) with that pro-
vided by Eq. (19) (see Tables 1–6). The results are summarized in Tables 3 and 6.
The analysis of the results show that the hypothesis of Markovianity of the random
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Table 4
P(�) for one-minute ensemble. As P(� = +1)¿P(� =−1) the series exhibit an increasing tendency

� = 0 � = 1 � =−1

P 0.70 0.20 0.10

Table 5
Transition matrix T for one-minute ensemble

�1 = 0 �1 = 1 �1 =−1

�0 = 0 0.77 0.13 0.10
�0 = 1 0.53 0.44 0.03
�0 =−1 0.50 0.21 0.29

Table 6
P(�0; �2) for 1-min ensemble

�1 = 0 �1 = 1 �1 =−1

Theoretical (according to Eq. (19))
�0 = 0 0.49 0.13 0.07
�0 = 1 0.13 0.06 0.02
�0 =−1 0.07 0.02 0.01

Experimental
�0 = 0 0.49 0.13 0.07
�0 = 1 0.13 0.06 0.02
�0 =−1 0.07 0.02 0.01

process holds in a very good extent. We conclude that to the experimental extent the
Markovian hypothesis is a reasonable @rst order approximation.

6. Stability of the random process

Let us analyze the stability of the random process associated to T. We will repre-
sent the marginal probability by a three-dimensional vector p̃ = (p0; p+; p−) where
p� ≡ P(�). Let us notice that t�′�p� =P(�0 = �; �1 = �′), that is, the joint distribution
of states separated a distance of one time unit. For that reason and using stationarity,∑

�

t�′�p� = p�′ (23)

that is,

Tp̃= p̃ (24)
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Table 7
Eigenvalues associated to the random process. The small imaginary part in the eigenvalues of the second
ensemble is probably a numerical artifact

�1 �2 �3

Daily ensemble
1.00 0.36 0.20
1-min ensemble
1.00 0:25 + 0:04i 0:25− 0:04i

Eq. (24) has a great importance for the stability of the process: it means that the
marginal probability distribution p̃ is stable under application of the random process
T. Also, p̃ is a eigenvector (of eigenvalue 1) of the matrix T. A successive, iterative
application of T over any distribution function would tend to make it more and more
approximate to p̃ as the process is applied. In fact, we should obtain all the eigenvalues
of the matrix to make sure that the largest one is precisely that associated to p̃, which
would make this point an attractor of the dynamics.
We have computed the eigenvalues associated to the random matrices T associated

to both ensembles; we have represented them in Table 7, from the largest absolute
value to the smallest one, for both ensembles.
We observe that the stationarity is well veri@ed: there is actually an eigenvalue

equal to 1, and its associated eigenvector is precisely p̃, the marginal distribution. But
more importantly, this eigenvalue is the greatest in absolute value, so it dominates the
convergence in the long run. Also, the other eigenvalues are positive but smaller than
1, so the part they describe tends to vanish when the process is applied iteratively. We
conclude that the experimental random processes are stable and they converge to the
observed marginal distribution.
Hence, the elemental random process T governs the dynamics which generate the

oriented MSM. It would be possible to use this matrix to create a new multifractal
elemental series with the same statistics as the original one. Of course, in practice
T can be non-stationary, but anyway the time scale of its variation should be rather
large, as the factorization hypothesis seems very consistent. Another important remark
is that the stationary marginal distribution is completely de@ned by T (it is the only
normalized eigenvector of eigenvalue 1). But the growing (or decreasing) character
of the series is driven by the excess (or lack) of positive signs with respect to the
negative signs in the series de@ned by the oriented MSM. So, the elemental random
process would not only generate multifractal series, but always with the same growing
or decreasing character: tendency is constant. To take account changes in tendency, a
study on the Iuctuations in the elementary random matrix should be introduced.

7. Conclusions

In this paper we have shown that Iuctuations of returns in stock market time series
show multifractal properties. This multifractal character is reIected in a de@nite
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geometry for the series, arranged around fractal components of characteristic power
law behaviour under changes in scale. We have exploited further this geometry and we
have experimentally shown that the most singular of the fractal components (that is, the
one which is dominant when the scale is reduced) can be used to reconstruct the whole
series to a good extent. This means that the information about the series is contained
in this set and its dynamics is driven by it. It has a highly non-trivial structure (what
questions claims of “lack of structure” for economics series), as can be seen for the
poor performance of random and uniform sampling with the same density. Also, an
important information about the dynamics generating the MSM can be deduced from
the data: at least in a good @rst order approximation, this set is constructed as a result
of a Markov chain random process, in which the state of the point (which characterizes
if the point belongs to the MSM, and its orientation in this case) is only dependent on
the state of the previous point. This random process could be considered as the basis
event to describe the dynamics underlying the series.
Future directions that should be addressed concerns the stability and econometric

interpretation of this elemental random process, as its performance in generating good
multifractal series, even prediction. A diDerent but important issue to be considered is
the description of the actual intensity (gradient) pro@le on the MSM. In fact, it can
be proven (as it will be shown in future works) that it follows a slow varying pattern
with however very important events.
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