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Abstract

The price time series of the Italian government bonds (BTP) futures is studied by means
of scaling concepts originally developed for random walks in statistical physics. The series of
overnight price di�erences is mapped onto a one-dimensional random walk: the bond walk. The
analysis of the root mean square uctuation function and of the auto-correlation function indicates
the absence of both short- and long-range correlations in the bond walk. A simple Monte Carlo
simulation of a random walk with trinomial probability distribution is able to reproduce the main
features of the bond walk. c© 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The relationship between economics and the physical sciences has a long and inter-
esting history. Outstanding economists of the past explicitly inspired their work from
the principles of Newtonian physics and statistical mechanics, attracted by the success
of these theories. It is, for instance, the case of Vilfredo Pareto who carried on a math-
ematical approach to political economy by exploiting his background in the physical
sciences and engineering [1].
However, despite the existence of many problems of common interest, the interac-

tion between statistical physicists and economists has never been strong [2]. Only in
recent times, physicists and economists started talking to each other more and more
frequently. An important milestone in this dialogue was the publication of the pro-
ceedings of a meeting held in Santa Fe in 1988 and organized by the Santa Fe
Institute [3].
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The renewed interest of physicists for economics was a consequence of the
“explosion” of non-linear (or chaotic) science. Many scholars started to ask them-
selves whether there was any predictability of �nancial time series, a problem of
enormous practical importance for investors in the �nancial market. These develop-
ments were marked by a bit of folklore. Many non-specialized journals, newspapers
and magazines wrote article about or interviewed J. Doyne-Farmer, who, together with
his old friend Norman Packard, left the academic research to establish the Predic-
tion Company, in order to gamble on the �nancial markets [4]. In the meantime
many reports appeared on Wall Street hiring scientists familiar with statistics and
time-series analysis [5]. The papers distributed at the recent meeting on Forecast-
ing �nancial markets show that the techniques outlined in the Santa Fe meeting are
now, less than ten years later, quite well established in the �eld of �nancial ana-
lysis [6].
Among the various approaches, the one making use of scaling concepts has been

successful especially for the characterization of �nancial time series. Scaling concepts
provide a unifying and very useful tool for the investigation of phenomena in physics,
chemistry and biology [7–9]. The use of scaling concepts in the economic and social
sciences can be traced back at least to the work of Zipf [10], who discovered the rank-
frequency statistics taking now his name. Essentially, Zipf found that the frequency of
a word in a written document is inversely proportional to the rank order of that word.
Zipf tried to justify this discovery in terms of a variational principle (the principle
of least e�ort) analogous to the successful variational principles in mechanics or
optics. A recent discussion on the origin of Zipf’s law can be found in
Ref. [11].
The usefulness of scaling concepts in the analysis of �nancial markets has been

shown by a series of papers written by Mantegna and Stanley [12–16]. Analyzing the
time evolution of the S&P 500 index, they proved that the simplest model describing
the dynamics of prices in speculative markets is the truncated L�evy ight [12–14].
Other works have focused on the analogy between the price dynamics in the foreign
exchange market and three-dimensional turbulence [17]. However, such a result does
not hold true for the S&P 500 index [15].
This paper is devoted to a simple analysis of the time series of the Italian long-

term bond (BTP: Buoni del Tesoro Poliennali) futures. The focus is on the di�erence
between the closing price and the opening price of the next day. Overnight price
di�erences are rather an intriguing subject. If you ask a practitioner analyst, he or she
will almost always �nd a reason for the price di�erence based on the major overnight
economical and political events. Moreover, usually, the volume of contracts exchanged
at the morning opening price is one of the largest in the day. The paper is organized as
follows. In Section 2, the overnight price di�erence is mapped onto a simple random
ight and the scaling behavior of its mean square uctuation is computed. Finally, in
Section 3, I summarize the main result of the present paper and outline the direction
of future work.
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2. Futures and scaling properties

The Italian Government bond futures are contracts based on the Italian Govern-
ment bonds and exchanged at the London International Financial Futures and Options
Exchange (LIFFE). In Fig. 1, the time evolution of the BTP-future prices for 1377
days, from 18 September 1991 to 20 February 1997 is presented. The dashed line rep-
resents the opening prices, whereas the continuous line represents the closing prices.
The two curves almost superimpose.
As I said in the introduction, the following analysis will focus on overnight price

di�erences. In Fig. 2, the 1366 points of the overnight price di�erence are plotted. The
week-end and holiday variations are considered as overnight di�erences. In order to
further simplify the problem, I shall address the question of whether the next morning
price is greater, equal, or lower than the previous evening price. Then, it is possi-
ble to map the overnight price di�erence time series onto a one-dimensional random
walk. If the price increases, I let a walker move up (u(i)=+1) one unit length; if
the price decreases, the walker will move down (u(i)=− 1) one unit length. Finally,
if the price does not change, the walker does not move (u(i)= 0). This procedure
de�nes a walk (the bond walk), perfectly analogous to the DNA walk which has been
used to investigate the presence of long-range correlations in DNA sequences [18].
The only di�erence is that, here, also the case of non-moving walkers is taken into
account. Following Ref. [18], I compute the displacement of the walker after the tth
step

y(t)=
t∑
i=1

u(i) : (1)

This quantity is plotted in Fig. 3. In order to characterize the correlations, the root
mean square uctuation around the average displacement, F(t), can be com-
puted:

F2(t)= 〈�y(t)2〉 − 〈�y(t)〉2 ; (2)

where �y(t)=y(t0 + t) − y(t0), and 〈 · 〉 is the average over all initial steps t0. F(t)
obeys the following scaling law [1,18]:

F(t) ∝ t� : (3)

If the walk is completely random, that is the correlations are zero on average except
in the origin, then the scaling exponent has the value �= 1

2 ; the same value is attained
if there are short-range correlations [1,8,18]. For long-range (ideally in�nite-range)
correlations the scaling exponent takes a value di�erent from 1

2 [18]. In order to estimate
the scaling exponent, I have divided the time series into 12 non-superimposing sub-
series containing 100 points each. For each sub-series, I got an estimate of F(t) for
t between 1 and 35. In Fig. 4, the average value of F(t) is plotted with its error
computed according to Student’s t-distribution. The linear best �t of the data gives
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Fig. 1. Price variation of the BTP future as a function of time. The opening (dashed line) and closing
(continuous line) prices are sampled every day. The two curves almost always superimpose.

Fig. 2. Overnight price di�erence time series. Most of the overnight price variations are below 1 Italian Lira.

a scaling exponent �=0:49. Therefore, the presence of long-range correlations in the
bond random walk can be ruled out. With the analysis performed so far it is impossible
to exclude the presence of short-range correlations. To this purpose, a direct estimate of
the auto-correlation function is necessary. In Fig. 5, an estimate of the auto-correlation
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Fig. 3. Displacement y(t) for the bond walk de�ned in the text.

Fig. 4. Root mean square uctuation function F(t) for the bond walk. The straight line is a linear �t of the
data and its slope is nearly 1

2 (see text for more details).

function C(�) is presented. The following unbiased estimator has been used [19]:

C(m)=
1

N − m
N−m−1∑
n=0

u(n+ m)u(n)−
[
1
N

N−1∑
n=0

u(n)

]2
; (4)

where N is the number of points. The second term is the square of the average of u(i).



E. Scalas / Physica A 253 (1998) 394–402 399

Fig. 5. Correlation function C(�) for the bond walk. Only C(0) is signi�cantly greater than 0.

Fig. 6. Displacement y(t) for the simulation described in the text.

It must be remarked that C(0)¡1 because some u(i)’s are 0 and the average value of
u(i) is not 0. A glance to the auto-correlation function is su�cient to conclude that no
short-range correlations seem to be present. Indeed, it turns out that C(�).C(0) for
�¿1.
I shall now show that a simple one-dimensional random walk, where the walker has

probability p1 of moving upwards, p2 of moving downward and p3 of staying still, is
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Fig. 7. Root mean square uctuation function for the simulated walk. The straight line is a linear �t of the
data and its slope is nearly 1

2 .

Fig. 8. Correlation function C(�) for the simulated walk. Also here only C(0) is signi�cantly greater than 0.

su�cient to reproduce the behavior of the bond walk. In the latter the walker moves
up 707 times (51.7%), down 610 times (44.7%), and does not move 49 times (3.6%).
It is natural to assume p1, p2, and p3 equal to the respective frequencies measured
in the bond walk. The result of a Monte Carlo simulation of the bond walk is plotted
in Fig. 6. At every step of the simulation, +1 is selected with probability p1 = 0:517,
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−1 is selected with probability p2 = 0:447 and 0 is selected with probability p3 = 0:036.
The simulated displacement y has the same upward trend of the real displacement.
In Fig. 7, the estimate of F(t) is plotted. The scaling law of Eq. (3) is obeyed
with �=0:49. Finally, in Fig. 8, the auto-correlation function computed according to
Eq. (4) is given for the simulated walk. Again no short-range correlations are present,
as expected.

3. Conclusions

In the present paper, I have investigated some of the scaling properties of the Italian
government bond (BTP) future price time series. In particular, I have considered the
overnight price di�erences and I have shown that no long- or short-range correlations
seem to be present. In order to reach this conclusion, the time series of overnight
di�erences has been mapped onto a one-dimensional random walk and the root mean
square displacement uctuations and the correlation function of the walk have been
analyzed. The features of the bond random walk are well reproduced by a random
walk with trinomial probability distribution. Also in this instance, scaling concepts
taken from statistical mechanics have proven useful for the analysis of a �nancial
time series. I am currently investigating whether the truncated L�evy ight introduced
by Mantegna and Stanley is able to reproduce the dynamics of the tick-by-tick time
series.
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