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Financial prices have been found to exhibit some universal
characteristics'® that resemble the scaling laws characterizing
physical systems in which large numbers of units interact. This
raises the question of whether scaling in finance emerges in a
similar way—from the interactions of a large ensemble of market
participants. However, such an explanation is in contradiction to
the prevalent ‘efficient market hypothesis”’ in economics, which
assumes that the movements of financial prices are an immediate
and unbiased reflection of incoming news about future earning
prospects. Within this hypothesis, scaling in price changes would
simply reflect similar scaling in the ‘input’ signals that influence
them. Here we describe a multi-agent model of financial markets
which supports the idea that scaling arises from mutual interac-
tions of participants. Although the ‘news arrival process’ in our
model lacks both power-law scaling and any temporal dependence
in volatility, we find that it generates such behaviour as a result of
interactions between agents.

In our model, the pool of traders is divided into two groups: the
first group (‘fundamentalists’) follows the premise of the efficient
market hypothesis in that they expect the price (p) to follow the so-
called fundamental value of the asset ( pf), which is the discounted
sum of expected future earnings (for example, dividend payments).
A fundamentalist trading strategy consists of buying (selling) when
the actual market price is believed to be below (above) the funda-
mental value. The second group (called ‘noise traders’ following
established terminology in economics®), however, does not believe
in an immediate tendency of the price to revert to its underlying
fundamental value. Instead of focusing on fundamentals, these
agents attempt to identify price trends and patterns (charts), and
also consider the behaviour of other traders as a source of informa-
tion, which results in a tendency towards herding behaviour.
Furthermore (because it is important for the resulting market
operations whether a noise trader believes in a rising or declining
market), we further distinguish between optimistic and pessimistic
individuals in this group: optimists will buy additional units of the
asset, whereas the pessimists will sell part of their actual holdings of
the asset.

The main building blocks of the model are movements of
individuals from one group to another together with the (exogen-
ous) changes of the fundamental value and the (endogenous) price
changes resulting from the agents’ market operations. A dis-
tinguishing feature of our approach as compared with other
recent simulation models”'* is that we adopt a mass-statistical
formalization inspired by statistical physics'>'®: individuals react to
certain economic forces by changing their behaviour with a certain
(endogenous) probability. As a simple formalization of movements
into and out of the three groups we use exponential functions, so
that a switch from one group to another occurs with a certain
endogenous and time-varying probability ve””At within some
small increment At. Here the coefficient v is a parameter for the
frequency of revaluation of opinion or strategy by the agents
(possibly assuming different values for different types of switches),
and the function U(¢) is a forcing term covering those factors that
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are decisive for the pertinent changes of behaviour. The dynamics of
our artificial market incorporates the following elements:

Changes of opinion of the noise traders. These changes, from a
pessimistic to an optimistic mood and vice versa, are governed by
the development of the ‘noise’ factors: the actual price trend is used
as a proxy for the influence of ‘chartist’ practices while herding
effects are formalized by computing the majority opinion among
noise traders as the (scaled) difference between optimistic and
pessimistic individuals. A weighted combination of both factors
appears in the U function that governs changes of opinion. If both
components are in harmony, a dominant trend of switches will
ensue. For example, observation of price increases together with a
prevalence of optimistic individuals would be seen as a strong
indication of a continuation of a rising market, and would result
in a tendency of formerly pessimistic individuals to convert to the
optimistic group. Conflicting signals, of course, would reduce the
disposition to follow either the majority opinion or the actual price
trend.

Switches between the noise traders and the fundamentalists. Such
switches are driven by the difference between the (momentary)
profits earned by individuals in both groups: profits of noise traders
from the optimistic group consist in short-term capital gains due to
the price change (or losses in the case of a fall of the market price).
Fundamentalists, on the other hand, consider the deviation between
price and fundamental value as the source of arbitrage oppor-
tunities. The difference between both strategies is that the gains of
chartists are immediately realized whereas those claimed by funda-
mentalists occur only in the future and depend on the uncertain
time for reversal to the fundamental value. To take account of this,
fundamentalists’ arbitrage profits are discounted by a factor <I.
The difference between profits of both groups enters the U-function
in the transition probability, with switches from the fundamentalist
group to the (optimistic) noise traders dominating if the profit
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Figure 1 Typical ‘snapshot’ from a longer simulation run. Panel a shows the
development with time of both the market price p (solid line) and the fundamental
value pr (dotted line). (We have shifted the latter series vertically for better
visibility.) Panel b shows returns (log changes of the market price:
ret, = In(,) — In(p,_)); panel ¢ shows log changes of the fundamental value
(e = In(ey,) — In(py, - ), respectively; both series have been computed from the
time series shown in a. The increments of In(o+) follow a normal distribution.
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differential is in favour of the latter group and vice versa. For
comparison of profits between pessimistic noise traders and funda-
mentalists, the point of view has to be changed appropriately:
because the former rush out of the market in order to avoid
losses, their gain is given by the difference between the average
profit rate from alternative investments (assumed to be constant)
minus the price change (which, when negative, amounts to a capital
loss) of the asset they sell. Again, a profit differential in favour of one
of the two groups tends to induce changes of behaviour among
members of the other group.
Price changes. These are endogenous responses of the market to
imbalances between demand and supply—excess demand (supply)
leading to an increase (decrease) of the prevailing price. Demand
and supply, however, originate from the decisions of our agents:
assuming a constant average trading volume of noise traders, their
demand and supply is readily determined by the actual numbers of
optimistic and pessimistic individuals. Fundamentalists’ sensitivity
to the relative deviation of the price from the fundamental value, on
the other hand, amounts to an excess demand of this group
depending on the difference p — p;. Overall excess demand is the
sum of both components.
Changes of fundamental value. These constitute the external driving
force which affects the market through the operations of funda-
mentalist traders. In order to ensure that none of the typical
characteristics of financial prices can be traced back to exogenous
factors, we assume that the relative changes of p; are Gaussian
random variables, i.e. In(p;,) — In(p;,_,) = ¢, with ¢, following a
normal distribution with mean zero and time-invariant variance o7.
A more detailed description of our model and some theoretical
results are available as Supplementary Information. Theoretical
analysis reveals that stationary states of our dynamics are character-
ized by a price which on average equals the fundamental value.
Hence, at least in the long term, we have an ‘efficient’ market which
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Figure 2 | og-log plot of the complement of the cumulative distribution of returns
(ret.) at different levels of time aggregation: ret.(r) = In(p,) — In(p,_,). All time
series are scaled by their sample standard deviation and the positive and
negative tails have been merged by using absolute returns. For comparison,
the solid line gives the complement of the cumulative distribution of the standard
normal distribution on which the scaled changes of the fundamental value,
¢ = In(py,) — In(py, _,), would collapse at all levels of aggregation. For the highest
frequencies, one observes clear deviations from the exponential decay with
approximate power-law scaling. Performing a log-log regression on the largest
30% of the observations, the estimated slope is —2.64 + 0.077 at unit time steps
(r=1). This is close to results obtained for various financial prices at daily
frequencies. Increasing the time step 7, a cross-over to the normal distribution
is observed. This is also known to occur with financial data when proceeding
from daily frequency to lower (weekly, monthly) frequencies.
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incorporates all new information into market prices: no ‘patholo-
gical’ situations, with persistent deviations from the economy’s
fundamentals, occur. A typical simulation (Fig. la) shows how
closely the price tracks the development of the fundamental value.
But comparing the time paths of returns extracted from the price
path: ret.(7) = In(p,) — In(p, _,) with relative changes of p; (Fig. 1b
and ¢) it is evident that the distributional characteristics of ¢, are not
reflected in similarly normally distributed returns—despite the
close association of the integrated time paths in Fig. la, the
statistical properties of the increments differ fundamentally. In
particular, the time series of returns exhibits a higher frequency of
extreme events and clustering of volatility.

Figure 2 shows the differences of the unconditional distributions
between the input (logarithm of changes of pf) and the output
(relative price changes). As compared with the exponential fall-off
of the density of the input, one observes a clear widening of the
distribution of large price fluctuations which roughly follows a
power law. Determining the exponent « of the Pareto distribution
for the tails (that is, F(ret. >x) =~ cx ) from a regression in
logarithmic coordinates yields an estimate of 2.64 for data with a
unit time step; this is in good agreement with results obtained for
empirical data at daily frequencies'”'*. However, for returns at lower
frequencies (that is, under time aggregation), we also observe a
cross-over to the normal distribution with increasing time lag 7. The
same happens for empirical financial data.

Turning to the issue of temporal dependence: we estimated the
self-similarity parameter H for both raw returns and absolute
returns using the approach of Peng et al.”’ (Fig. 3). For raw returns,
differences in scaling behaviour between the input and output time
series are small, yielding H = 0.49 and H = 0.48, respectively. This
is in accordance with absence of long memory (H = 0.5) in
empirical financial returns. As a consequence, the degree of pre-
dictability of price changes is small. However, the picture changes
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Figure 3 Estimation of self-similarity parameter H. a, Absolute returns; b, raw
returns. Using the approach of Peng et al.'® the exponent H was estimated from
the behaviour of the average fluctuation (F(t)) of a random variable about its local
trend in intervals of size t. The expected behaviour is a power law, (F(t)) = ", from
which H can be extracted performing a regression in log coordinates. Panel b
compares the scaling of raw returns and changes of In(py). For the latter, the self-
similarity parameter H is estimated to be H = 0.49 = 0.03 (slope of dashed line),
which is close to the theoretically expected value of 0.5 for a white-noise process.
The scaling of returns yields H = 0.48 + 0.003, which differs only slightly from the
results for the input. (The curve for ps has been shifted vertically for better
visibility.) Panel a depicts the development of the fluctuation function of absolute
returns. Here we see clear differences between the behaviour of the exogenous
force (H = 0.51 = 0.004, the slope of the dotted line) and the series of absolute
returns, the latter being characterized by strong persistence with estimated
H =0.85 + 0.010 (solid line).
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dramatically when considering absolute returns as a measure of
volatility. Here we see that the transformed price data behave
differently from their counterpart derived from the input series,
and exhibit H = 0.85 which is a sign of strong persistence in
volatility. The exponent is again very close to the scaling found
for empirical data®.

As these scaling properties are absent in the external driving force,
they are generated by the interaction of economic agents with
heterogeneous beliefs and strategies in our simulated market. Can
we explain the emergence of power laws in these simulations? A
closer investigation reveals that the alternation between tranquil
and turbulent periods comes about through the changes of agents
between groups. In particular, in periods of high volatility we also
find a large fraction of agents in the noise trader group. Theoretical
analysis shows that a critical value for the number of noise traders
exists where the system loses its stability. Volatility is above average
when the fraction of noise traders comes close to this critical point,
or even increases beyond it, for some time. However, the ensuing
destabilization is only temporary, and turbulent phases are over-
come quickly by endogenous mechanisms: large deviations from the
fundamental value are seen as profit opportunities by fundamen-
talists whose operations then tend to stabilize the market again. This
temporal instability is similar to mechanisms found recently in
various models in physics where this phenomenon has been
denoted on-off intermittency’ . As the possibility of temporal
destabilization (with ensuing bursts of volatility) exists for an open
set of parameter values, the qualitative outcome of our model seems
to be extremely robust. This has been confirmed by simulations with
many different parameter sets (data not shown), which all led to
endogenous emergence of power-law tails and temporal depen-
dence of volatility, albeit with varying coefficients o and H. O
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Quantum-mechanical interference between indistinguishable
quantum particles profoundly affects their arrival time and
counting statistics. Photons from a thermal source tend to
arrive together (bunching) and their counting distribution is
broader than the classical Poisson limit'. Electrons from a thermal
source, on the other hand, tend to arrive separately (anti-bunch-
ing) and their counting distribution is narrower than the classical
Poisson limit**, Manipulation of quantum-statistical properties
of photons with various non-classical sources is at the heart of
quantum optics: features normally characteristic of fermions—
such as anti-bunching, sub-poissonian and squeezing (sub-shot-
noise) behaviours—have now been demonstrated®’. A single-
photon turnstile device was proposed®® to realize an effect similar
to conductance quantization. Only one electron can occupy a
single state owing to the Pauli exclusion principle and, for an
electron waveguide that supports only one propagating transverse
mode, this leads to the quantization of electrical conductance: the
conductance of each propagating mode is then given by G, = €*/h
(where e is the charge of the electron and h is Planck’s constant;
ref. 9). Here we report experimental progress towards generation
of a similar flow of single photons with a well regulated time
interval.

When a light-emitting p—n junction is driven with a high-
impedance constant-current source, injection of electron—hole
pairs can be regulated to below the classical shot-noise limit and
light with sub-shot-noise intensity fluctuations can be generated'’.
This is possible because the inelastic scattering of electrons in a
highly dissipative resistor can suppress the current noise by means
of the Pauli exclusion principle'""?, and the Coulomb repulsive
interaction between electrons in a p—n junction can suppress the
electron injection noise by way of the collective Coulomb blockade
effect'>™"°. In these squeezing experiments with a macroscopic p—n
junction, however, only large numbers of photons (of the order of
~10®) can be regulated owing to a small single charging energy.

It has been demonstrated in mesoscopic physics that an ultra-
small tunnel junction regulates the electron transport one by one
owing to a single charging energy that is large compared to the
thermal background energy'®™'®. If such a single-electron control
technique could be extended to simultaneous control of electron
and hole in a p—n junction, a single photon would be regularly
emitted, one by one®.

Our single-photon turnstile device utilizes simultaneous
Coulomb blockade for electrons and holes in a mesoscopic
double barrier p—n junction (Fig. 1a). The structure consists of an
intrinsic central quantum well (QW) in the middle of a p—n
junction and the n-type and p-type side QWs isolated by tunnel
barriers from the central QW. The lateral size of the device is
reduced to increase the single charging energy ¢*/2C;, where C; (i
is n or p) is the capacitance between the central QW and the i-side
QW. At a certain bias voltage V;, the conditions for electron
resonant tunnelling are fulfilled, and the mth electron can tunnel
into an electron sub-band in the central QW. When the mth electron
tunnels, the Coulomb repulsive interaction between electrons shifts
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