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Scale-Free Network in Stock Markets
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We study the cross-correlations in stock price changes among the S&P 500 companies by introduc-
ing a weighted random graph, where all vertices (companies) are fully connected via weighted edges.
The weight of each edge is distributed in the range of [−1, 1] and is given by the normalized covari-
ance of the two modified returns connected, where the modified return means the return minus the
mean over all companies. We define an influence-strength at each vertex as the sum of the weights
on the edges incident upon that vertex. Then we find that the influence-strength distribution in its
absolute magnitude |q| follows a power-law, P (|q|) ∼ |q|−δ, with exponent δ ≈ 1.8(1).
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Recently complex systems such as biological, eco-
nomic, physical, and social systems have received consid-
erable attention as an interdisciplinary subject [1]. Such
systems consist of many constituents, such as individu-
als, companies, substrates, spins, etc., exhibiting cooper-
ative and adaptive phenomena through diverse interac-
tions between them. In particular, in economic systems,
adaptive behaviors of individuals, companies, or nations,
play a crucial role in forming macroscopic patterns such
as commodity prices, stock prices, exchange rates, etc.,
which are formed mostly in a self-organized way [2]. Re-
cently, in physics communities, much attention and many
studies have been focused and performed on the fluctu-
ations and the correlations in stock price changes be-
tween different companies by applying physics concepts
and methods [3,4].

Stock price changes of individual companies are influ-
enced by others. Thus, one of the most important quan-
tities in understanding the cooperative behavior in the
stock market is the cross-correlation coefficients between
different companies. Since stock-price changes depend
on various economic environments, it is very hard to con-
struct a dynamic equation and to predict the evolution
of the stock-price change in the future. Recently, there
have been many efforts to understand the correlations in
stock-price changes between different companies by us-
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ing a random matrix theory, where large eigenvalues are
located far away from a bulk part predicted by the ran-
dom matrix theory, reflecting the collective behavior of
the entire market [5–7].

Let Yi(t) be the stock price of company i (i = 1, . . . , N)
at time t. Then the return of the stock price after a time
interval ∆t is defined as

Si(t) = lnYi(t+ ∆t)− lnYi(t), (1)

which is the geometrical change of Yi(t) during the inter-
val ∆t. We take ∆t as one day throughout the following
analysis in this paper. The cross-correlations between
individual stocks are considered in terms of a matrix C,
whose elements are given by

ci,j ≡
〈SiSj〉 − 〈Si〉〈Sj〉√

(〈S2
i 〉 − 〈Si〉2)(〈S2

j 〉 − 〈Sj〉2)
, (2)

where the brackets mean a temporal average over the
period we studied. Then ci,j can vary between [-1,1],
where ci,j = 1 (-1) means that two companies i and j
are completely correlated (anti-correlated), while ci,j = 0
means that they are uncorrelated. Since the matrix C
is symmetric and real, all eigenvalues are real, and the
largest eigenvalue is not degenerate. It was found that
the eigenvector corresponding to the largest eigenvalue is
strongly localized at a few companies which strongly in-
fluence other companies in the stock price changes [5,6].
Moreover, an ultrametric hierarchical tree structure was
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constructed among those companies, by using the con-
cept of the minimum spanning tree in the graph theory,
and that arranged those companies in order following
their strengths of influence [8,9].

In this paper, we study further properties of the cross-
correlations in stock-price changes by using a random
graph theory [10]. The study of complex systems through
a random graph was initiated by Erdös and Rényi (ER)
[11]; however, the ER model is too random to describe
real-world complex systems. Recently, Barabási and Al-
bert (BA) [12] introduced an evolving network where
the number of vertices increases with time rather than
remaining fixed, and a newly introduced vertex is con-
nected to m already existing vertices, following the so-
called preferential attachment rule. The number of
edges, k, incident upon a vertex is called the degree of
the vertex. Then the degree distribution PD(k) follows
a power-law PD(k) ∼ k−γ with γ = 3 for the BA model,
while for the ER model, it follows a Poisson distribu-
tion. The network following a power-law in the degree
distribution is called a scale-free (SF) network. Although
natural phenomeno, such as river network, is based on a
regular network [13], recently it was found that a variety
of real world networks can be explained by such random
SF networks.

For the problem of the correlations in stock-price
changes, each vertex (edge) in the random graph corre-
sponds to a company (the cross-correlation in stock price
changes between the companies connected via that edge).
The random graph generated in this way is different from
a typical one in the following way: While the edge in a
typical random graph has weight either 1 or 0, depend-
ing on if the edge is present, the edge in the random
graph we will introduce has weight wi,j , which is rather
distributed between [-1,1]. For further studies, the ran-
dom graph for the former (latter) case is called a binary
random graph (BRG) (weighted random graph (WRG)).
While the WRG can be found easily in real-world net-
works such as neural networks, cardiovascular networks,
and respiratory networks in biological systems, acquain-
tance networks in social systems, etc, it has been studied
less than the BRG [14,15]. In the WRG, one may wonder
if the edge with less weight, called the weak edge, can be
ignored in considering the correlations; however, there
have been ongoing discussions about the importance of
weak edges, for example, in a social acquaintance net-
work, the scientific collaboration web, and ecosystems
[16,17].

Recently, Yook, Jeong and Barabási (YJB) introduced
a WRG [17]. In that model, a vertex i is newly intro-
duced at each time step, connecting to the m vertices
already existing according to the so-called preferential
attachment rule. The edge connecting from the vertex
i to an existing vertex j is assigned a weight wi,j , de-
pending on the degree of the vertex j. The weight at
each vertex is assigned as the sum of the weights on the
edges incident upon that vertex, which follows a power-
law distribution, P (q) ∼ q−δ, where q means the weight

at a vertex. Then the exponent δ is different from the de-
gree exponent γ and turns out to strongly depend on the
mean degree m. While the YJB model is meaningful as
a first step towards understanding diverse WRGs in the
real world in a simple way, it still remains a theoretical
network. The YJB graph is different from ours; While
the YJB graph is weighted but sparsely connected, our
WRG are fully connected and weighted.

We consider the cross-correlations in stock-price
changes between the S&P 500 companies during 5-year
period 1993-1997. Thus, the N = 500 companies corre-
spond to 500 vertices, which are fully connected to each
other with N(N − 1)/2 edges. Each edge is assigned
a weight, wi,j (i, j = 1, . . . , N), which is slightly modi-
fied from the cross-correlation coefficient ci,j defined in
Eq. (2). Before defining wi,j specifically, we first re-
call some properties exhibited by ci,j . It is known that
the distribution of the coefficients {ci,j} forms a bell-
shaped curve and that the mean value of the distribu-
tion is slowly time-dependent while the standard devi-
ation is almost constant [18]. The time-dependence of
the mean value might be caused by external economic
environments such as bank interest, the inflation index,
the exchange rate, etc., which fluctuates from time to
time. To extract intrinsic properties of the correlations
in stock price changes, we introduce a quantity,

Gi(t) = Si(t)−
1
N

∑
i

Si(t), (3)

where Gi(t) indicates the relative return of a company i
to its mean value over the entire 500 companies at time t.
The cross-correlation coefficients are redefined in terms
of Gi,

wi,j ≡
〈GiGj〉 − 〈Gi〉〈Gj〉√

(〈G2
i 〉 − 〈Gi〉2)(〈G2

j 〉 − 〈Gj〉2)
. (4)

The cross-correlation coefficients {wi,j} are assigned to
each edge of the WRG as its weight. In order to check
if the distribution is time-independent, we take the tem-
poral average in Eq. (4) over each year from 1993 to
1997. In Fig. 1, we plot the distributions of {wi,j} ob-
tained for each year. The data for different years are
indeed overlapped, and time-independent. Therefore we
think that the cross-correlation coefficients {wi,j} we in-
troduced are appropriate to study intrinsic properties of
the cross-correlations among the 500 S&P companies.

We define the influence-strength qi at a vertex i as the
sum of the weights on the edges incident upon the vertex
i; that is,

qi =
∑
j 6=i

wi,j , (5)

where j denotes the vertices connected to the vertex
i. Here, {wi,j} was obtained numerically by tempo-
ral averaging over the 5 years in Eq. (4). Then the
weight qi means the net amount of influence-strength for
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Fig. 1. Plot of the distribution of the cross-correlation
coefficients {wi,j}. The data are obtained by temporal aver-
aging over each year from 1993 to 1997.

the company i to affect other companies in stock-price
changes. Since the weight wi,j is distributed between
[-1,1], the influence-strength at a certain vertex could
be negative. Thus, we deal with the absolute magni-
tude of the influence-strength for each vertex. In Fig. 2,
we plot the influence-strength distribution PI(|q|) as a
function of |q|, which turns out to follow a power-law,
PI(|q|) ∼ |q|−δ. The exponent δ is estimated to be
δ ≈ 1.8(1). Thus the cross-correlations in stock-price
changes forms a SF network, in particular a weighted
SF network. To our knowledge, this is the first obser-
vation of SF WRG emerging in real-world economic sys-
tems. The presence of a scaling in the cross-correlations
through the WRG could be related to the ultrametric hi-
erarchical tree structure, implying a few companies exist
having strong influence in stock price changes. On the
other hand, it is easy to see that as the degree exponent
in SF networks is smaller, the connectivity to the hub,
the vertex with the largest degree, is higher, and the net-
work is much centralized. This fact is also applicable to
the SF WRG we introduced. Since the influence-strength
exponent δ is smaller than 2 in the WRG, the vertex
having largest influence-strength plays a much more im-
portant role in affecting stock-price changes of other ver-
tices, compared with the role of the hub in the Internet
[19], the world-wide web [20] and the metabolic network
[21], where the degree exponent is greater than 2. We
think that this result reflects economic systems being
much more correlated and adaptive to achieve high prof-
its. Thus the rich-get-richer phenomenon appears much
strongly in economic systems than in the information
systems. In contrast, we can expect that a simple drop
in the stock price occurring in one of most influential
companies could lead to a crash in the entire stock mar-
ket.

Fig. 2. Log-log plot of the influence-strength distribu-
tion PI(|q|) versus the absolute magnitude of the influence-
strength |q|. The solid guideline has a slope −1.8.

It would be interesting to compare our WRG with
the BRG constructed via the minimum spanning tree
of Vandewalle et al. [22], To be specific, they consid-
ered cross-correlation coefficients defined in Eq. (2) in
stock price changes between the 6 358 US companies, and
constructed a minimum spanning tree structure. They
measured the degree distribution for this BRG, which
follows a power-law, PD(k) ∼ k−γ , with γ ≈ 2.2, which
is obviously different from our results, δ ≈ 1.8(1).

In conclusion, we have considered the cross-
correlations in stock-price changes between the S&P
500 companies by introducing a weighted random graph
(WRG). The vertices of the WRG representing the 500
companies are fully connected to each other through
weighted edges. The edge connecting vertices i and j
have weights given by the correlation coefficient wi,j , de-
fined as the normalized covariance of the modified re-
turns of the two companies i and j. Here the modified
return of a company i means the deviation of the re-
turn of the company i from its average over all 500 com-
panies. This modification yields the effect of excluding
the overall behavior of the entire stock prices fluctuating
from time to time. The distribution of the correlation
coefficients obtained using the modified return is time-
independent, and the coefficients themselves describe
generic correlations between different companies with-
out considering the effect of external environments. We
defined the influence-strength at each vertex as the sum
of the weights assigned to the edges incident upon that
vertex. We found that the influence-strength distribu-
tion follows a power-law PI(|q|) ∼ |q|−δ with δ ≈ 1.8(1),
where q means influence-strength. The fact that the ex-
ponent δ is smaller than 2 implies that the stock-price
changes of the 500 companies are much strongly corre-
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lated than they are with the Internet topology or the
world-wide web, reflecting that cooperative and adaptive
phenomena appear dominantly in economic systems.
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[11] P. Erdös and A. Rényi, Publ. Math. Inst. Hung. Acad.

Sci. Ser. A 5, 17 (1960).
[12] A.-L. Barabási and R. Albert, Science 286, 509 (1999).
[13] H.-J. Kim and In-mook Kim, J. Korean Phys. Soc. 38,

497 (2001); H.-J. Kim, In-mook Kim and J. M. Kim,
Phys. Rev. E 62, 3121 (2000).

[14] R. Albert and A-L. Barabási, (cond-mat/0106096).
[15] S. N. Dorogovtsev and J. F. F. Mendes, (cond-

mat/0106144).
[16] E. L. Berlow, Nature 398, 330 (1999).
[17] S. H. Yook, H. Jeong, A.-L. Barabási and Y. Tu, Phys.

Rev. Lett. 86, 5835 (2001).
[18] R. N. Mantegna, in Applied Nonlinear Dynamics and

Stochastic Systems near the Millennium, edited by J. B.
Kadtke and A. Bulsara (AIP Press, New York, 1997).

[19] M. Faloutsos, P. Faloutsos and C. Faloutsos, Comp.
Comm. Rev. 29, 251 (1999).

[20] R. Albert, H. Jeong and A.-L. Barabási, Nature 401, 130
(1999).

[21] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvani and A.-L.
Barabási, Nature 407, 651 (2000).

[22] N. Vandewalle, F. Brisbois and X. Tordoir, (cond-
mat/0009245).


