
RE S E A R C H PA P E R Q UANTITATIVE F I N A N C E V O L U M E 3 (2003) 442–450
quant.iop.org IN S T I T U T E O F P H Y S I C S P U B L I S H I N G

Pricing of index options under a
minimal market model with
log-normal scaling

David Heath and Eckhard Platen

University of Technology Sydney, School of Finance and Economics,
Department of Mathematical Sciences, PO Box 123, Broadway,
NSW, 2007, Australia

Received 23 May 2003, in final form 11 July 2003
Published 5 September 2003
Online at stacks.iop.org/Quant/3/442

Abstract
This paper describes a two-factor model for a diversified market index using
the growth optimal portfolio with a stochastic and possibly correlated
intrinsic timescale. The index is modelled using a time transformed squared
Bessel process with a log-normal scaling factor for the time transformation.
A consistent pricing and hedging framework is established by using the
benchmark approach. Here the numeraire is taken to be the growth optimal
portfolio. Benchmarked traded prices appear as conditional expectations of
future benchmarked prices under the real world probability measure. The
proposed minimal market model with log-normal scaling produces the type
of implied volatility term structures for European call and put options
typically observed in real markets. In addition, the prices of binary options
and their deviations from corresponding Black–Scholes prices are examined.

1. Introduction
A rich literature has now emerged on continuous time
equity index modelling. For some recent accounts one can
refer to Renault and Touzi (1996), Musiela and Rutkowski
(1997), Rebonato (1999), Schönbucher (1999), Fouque et al
(2000), Lewis (2000), Rosenberg (2000), Balland (2002) and
Barndorff-Nielsen and Shephard (2002).

Despite much effort there is still no commonly accepted
market index model. Over the years a substantial body of
empirical evidence has been accumulated on the dynamics
of indices and their derivatives. Recent empirical research
is documented, for instance, in Franks and Schwartz (1991),
Heynen (1993), Heynen et al (1994), Bakshi et al (1997),
Dumas et al (1997), Das and Sundaram (1999), Skiadopolous
et al (2000), Tompkins (2001) and Cont and da Fonseca (2002).

It is evident from principal component analysis, see Cont
and da Fonseca (2002), that a one-factor model should be
able to account for 75–95% of the movements of the index
and implied volatility surface. However, an additional factor

is needed to capture, say, about 90–99% of these dynamics.
Thus, a two-factor model is likely to be required for most
applications. In addition, at present a two-factor model
represents the limit of what can be reliably implemented to
produce fast and accurate pricing tools, see Brigo and Mercurio
(2001). For these reasons we will focus our attention on a class
of two-factor models and will discuss a particular choice for
these factors.

We will specify the factors in a parsimonious way such that
the most important features of the observed index dynamics are
captured when using a few, piecewise constant parameters. By
using a result in Platen (2003b), which states that a diversified
portfolio approximates the growth optimal portfolio (GOP) we
identify the dynamics of a diversified index with that of the
GOP.

For the index model considered here, the GOP itself and
the scaling of the intrinsic GOP time are chosen as the two
primary factors. Together with the short rate they determine
the dynamics of the GOP, which plays a central role in our
model formulation, see Platen (2003b).
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In the literature, one typically assumes the existence of
an equivalent risk neutral measure. We relax this assumption
to enable us to choose from a wider range of modelling
alternatives. The approach is demonstrated for a generalization
of the minimal market model (MMM) described in Platen
(2001, 2002), where the discounted GOP follows a time
transformed squared Bessel process. The scaling of the
time transformation is modelled by a possibly correlated log-
normal process. A consistent fair pricing concept is obtained
by using the GOP as numeraire or benchmark, see Long
(1990) and Platen (2002). This pricing method assumes that
benchmarked traded derivative price processes are martingales
under the real world measure. Thus, benchmarked derivative
prices equal the conditional expectations of their future
benchmarked prices. They can be computed as expectations
under the real world probability measure.

We study the pricing of zero coupon bonds as well as
European call and put options and binary options. These
calculations enable us to compute the implied volatility term
structures for European call options and to compare these to
those typically observed in real markets. Finally, we consider
the pricing of path dependent binary options and examine the
differences between these prices and corresponding Black–
Scholes prices.

2. A benchmark model
2.1. Primary security accounts

Let us introduce a financial market model as a particular case of
the continuous, complete benchmark model proposed in Platen
(2002).

We introduce the primary security account processes S(0),
S(1), . . . , S(d), which are typically share accounts. The price
of the j th primary security account at time t , when measured
in units of the domestic currency, is denoted by S(j)(t) for
t ∈ [0, T ] and j ∈ {0, 1, . . . , d}. We assume that in
the j th primary security account the accrued income or loss
from holding this security is always reinvested. We assume
that S(j)(t) is the strong, unique solution of the stochastic
differential equation (SDE)

dS(j)(t) = S(j)(t)

{
aj (t) dt +

d∑
k=1

bj,k(t) dWk(t)

}
(2.1)

for t ∈ [0, T ] and j ∈ {0, 1, . . . , d} with S(j)(0) > 0.
In this framework the standard Wiener processes Wk =
{Wk(t), t ∈ [0, T ]}, k ∈ {1, 2, . . . , d} are defined on a filtered
probability space (�, AT , A, P ) with finite time horizon T ∈
(0, ∞), fulfilling the usual conditions, see Protter (1990).
Here the filtration A = (At )t∈[0,T ] models the evolution of
market information over time, where At denotes the market
information available at time t ∈ [0, T ].

The j th appreciation rate aj = {aj (t), t ∈ [0, T ]} and
(j, k)th volatility bj,k = {bj,k(t), t ∈ [0, T ]} are considered
to be A-adapted stochastic processes for j ∈ {0, 1, . . . , d} and
k ∈ {1, 2, . . . , d}, see Protter (1990). We set a0(t) = r(t)

and b0,k(t) = 0 for k ∈ {1, 2, . . . , d} so that S(0)(t) is the

value of the savings account at time t , where r(t) is the short
term interest rate at time t . Furthermore, the volatility matrix
b(t) = [bj,k(t)]dj,k=1 is for Lebesgue-almost-every t ∈ [0, T ]
assumed to be invertible. This ensures a proper securitization
of the uncertainty generated by the Wiener processes W 1, . . .,
Wd and makes the resulting model complete, see Platen (2002).

We denote by S = {S(t) = (S(0)(t), S(1)(t),. . . ,S(d)(t))�,
t ∈ [0, T ]} the vector of primary security accounts. Here A�

denotes the transpose of a vector or matrix A. By introducing
the appreciation rate vector a(t) = (a1(t), . . . , ad(t))� and
the unit vector 1 = (1, . . . , 1)�, we obtain the market price
for risk vector

θ(t) = (θ1(t), . . . , θd(t))�

= b−1(t)[a(t) − r(t)1] (2.2)

for t ∈ [0, T ]. The notion (2.2) allows us to rewrite the
SDE (2.1) in the form

dS(j)(t) = S(j)(t)

{
r(t) dt +

d∑
k=1

bj,k(t)[θk(t) dt + dWk(t)]

}
(2.3)

for t ∈ [0, T ] and j ∈ {0, 1, . . . , d}.

2.2. Strategies

Let us now consider portfolios of primary security accounts.
We say that a predictable stochastic process δ = {δ(t) =
(δ(0)(t), δ(1)(t), . . . , δ(d)(t))�, t ∈ [0, T ]} is a strategy if δ is
S-integrable, see Protter (1990). The j th component δ(j)(t) ∈
(−∞, ∞) of the strategy δ denotes the number of units of the
j th primary security account, which are held at time t ∈ [0, T ]
in the corresponding portfolio, j ∈ {0, 1, . . . , d}. For a
strategy δ we denote by S(δ)(t) the value of the corresponding
portfolio at time t , when measured in units of the domestic
currency. This means that

S(δ)(t) =
d∑

j=0

δ(j)(t)S(j)(t) (2.4)

for t ∈ [0, T ]. A strategy δ and the corresponding portfolio
process S(δ) are called self-financing if

dS(δ)(t) =
d∑

j=0

δ(j)(t) dS(j)(t) (2.5)

for all t ∈ [0, T ]. For a self-financing strategy δ no outflow or
inflow of funds occur in the corresponding portfolio S(δ). All
changes in the value of this portfolio are due to corresponding
gains from trade using the primary security accounts. We will
consider in the following only self-financing strategies and
corresponding self-financing portfolios. Therefore, we omit
from now on the word ‘self-financing’.

For a given strategy δ the corresponding portfolio value
S(δ)(t) satisfies according to (2.5) and (2.3) the SDE

dS(δ)(t) = S(δ)(t)r(t) dt

+
d∑

k=1

d∑
j=0

δ(j)(t)S(j)(t)bj,k(t)(θk(t) dt + dWk(t)) (2.6)

for t ∈ [0, T ].
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2.3. Growth optimal portfolio

We now introduce the GOP with value S(δ∗)(t) at time t ∈
[0, T ], see Kelly (1956), Long (1990), Karatzas and Shreve
(1998) or Platen (2002). The GOP is the portfolio that
maximizes the growth rate, that is the drift of log(S(δ)(t))

for all t ∈ [0, T ]. The optimal strategy δ∗ = {δ∗(t) =
(δ∗(0)(t), δ∗(1)(t), . . . , δ∗(d)(t))�, t ∈ [0, T ]} follows in a
straightforward manner from solving the first order conditions
for the quadratic growth rate maximization problem, see
Karatzas and Shreve (1998). The GOP then satisfies the SDE

dS(δ∗)(t) = S(δ∗)(t)

[
r(t) dt +

d∑
k=1

θk(t)(θk(t) dt + dWk(t))

]
(2.7)

for t ∈ [0, T ] with
S(δ∗)(0) > 0. (2.8)

It can be seen from (2.7) and (2.2) that the volatilities θk(t),
k ∈ {1, 2, . . . , d}, of the GOP are the market prices for risk.
Note that the GOP dynamics is fully characterized by the
market prices for risk process θk = {θ(t)k, t ∈ [0, T ]}, k ∈
{1, 2, . . . , d}, and the short rate process r = {r(t), t ∈ [0, T ]}.

2.4. Benchmarked prices

Throughout the following we use the GOP as numeraire or
benchmark and call prices when expressed in units of S(δ∗)(t)

benchmarked prices. The j th benchmarked primary security
account price at time t is then

Ŝ(j)(t) = S(j)(t)

S(δ∗)(t)
(2.9)

for t ∈ [0, T ] and j ∈ {0, 1, . . . , d}. For a portfolio S(δ) we
introduce its benchmarked portfolio value

Ŝ(δ)(t) = S(δ)(t)

S(δ∗)(t)
(2.10)

at time t ∈ [0, T ]. By application of the Itô formula together
with (2.6) and (2.7), the benchmarked portfolio value
Ŝ(δ)(t) satisfies the SDE

dŜ(δ)(t) =
d∑

k=1

d∑
j=0

δ(j)(t)Ŝ(j)(t)(bj,k(t) − θk(t)) dWk(t)

(2.11)
for t ∈ [0, T ]. The right-hand side of (2.11) is driftless.
Therefore, the benchmarked portfolio process Ŝ(δ) is under
appropriate integrability assumptions on σ , b and θ an (A, P )-
martingale, see Karatzas and Shreve (1991), where P is the real
world probability measure.

2.5. Fair pricing

We work here in a more general framework than what is
provided by the standard risk neutral pricing methodology. In
particular, we do not insist on the existence of an equivalent
risk neutral martingale measure. This enlarges crucially the
range of models that we can choose from. To price derivatives
we introduce the following concept of fair pricing.

Definition 2.1. A value process U = {U(t), t ∈ [0, T ]}, with

E

( |U(t)|
S(δ∗)(t)

)
< ∞

for t ∈ [0, T ], is called fair if the corresponding
benchmarked value process Û = {Û (t) = U(t)

S(δ∗)(t)
, t ∈ [0, T ]}

forms an (A, P )-martingale, that is

Û (t) = E(Û(τ )|At ) (2.12)

for 0 � t � τ � T .

A benchmarked fair price is the expected value of any of
its future benchmarked prices. For a fair price process its last
observed benchmarked value is thus the best forecast of any of
its future benchmarked values.

Let us define a contingent claim Hτ that matures at a
stopping time τ ∈ [0, T ] as an Aτ -measurable payoff with

E

( |Hτ |
S(δ∗)(τ )

∣∣∣∣At

)
< ∞ (2.13)

for all t ∈ [0, τ ]. The corresponding fair price process
UHτ

= {UHτ
(t), t ∈ [0, τ ]} for this contingent claim must

satisfy at the stopping time τ the condition

UHτ
(τ ) = Hτ . (2.14)

Thus the corresponding fair derivative price process,
when benchmarked, must be an (A, P )-martingale, see
definition 2.1. Consequently, its benchmarked value ÛHτ

(t)

is at time t ∈ [0, τ ] given by the conditional expectation

ÛHτ
(t) = UHτ

(t)

S(δ∗)(t)
= E(ÛHτ

(τ )|At ). (2.15)

Therefore, the fair contingent claim price UHτ
(t) at time t ,

when expressed in units of the domestic currency, is given by
the fair pricing formula

UHτ
(t) = S(δ∗)(t)E

(
Hτ

S(δ∗)(τ )

∣∣∣∣At

)
(2.16)

for t ∈ [0, τ ]. It is straightforward to show that if an
equivalent risk neutral martingale measure exists, then the fair
pricing formula generalizes the well-known risk neutral pricing
formula, see Platen (2002).

2.6. Discounted GOP

Let us discount the GOP value S(δ∗)(t) at time t by the savings
account value S(0)(t), see the remarks following (2.1). The
discounted GOP

S̄(δ∗)(t) = S(δ∗)(t)

S(0)(t)
(2.17)

satisfies by application of the Itô formula (2.7) and (2.1) the
SDE

dS̄(δ∗)(t) = S̄(δ∗)(t)

d∑
k=1

θk(t)(θk(t) dt + dWk(t)) (2.18)
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for t ∈ [0, T ]. Here the total market price for risk |θ(t)| or
GOP volatility is given by the expression

|θ(t)| =
√√√√ d∑

k=1

(θk(t))2 (2.19)

for t ∈ [0, T ]. Let us introduce a new parameter process
α = {α(t), t ∈ [0, T ]}, called the discounted GOP drift

α(t) = S̄(δ∗)(t)|θ(t)|2 (2.20)

for t ∈ [0, T ]. The parametrization given in (2.20) leads to the
total market price for risk

|θ(t)| =
√

α(t)

S̄(δ∗)(t)
. (2.21)

Thus, by (2.18), (2.20) and (2.21) we obtain for the discounted
GOP the SDE

dS̄(δ∗)(t) = α(t) dt +
√

α(t)S̄(δ∗)(t) dŴ (t) (2.22)

with

dŴ (t) = 1

|θ(t)|
d∑

k=1

θk(t) dWk(t), (2.23)

for t ∈ [0, T ], see Platen (2002). Using Levy’s theorem,
see Karatzas and Shreve (1991), it can be shown that
Ŵ = {Ŵ (t), t ∈ [0, T ]} is a standard Wiener process on
(�, AT , A, P ).

2.7. GOP time

Under the given parametrization the discounted GOP in (2.22)
turns out to be a particular diffusion process. To see this, we
introduce the GOP time

ϕ(t) = 1
4

∫ t

0
α(s) ds (2.24)

for t ∈ [0, T ]. Then the discounted GOP process X =
{X(ϕ), ϕ ∈ [0, ϕ(T )]} with

X(ϕ(t)) = S̄(δ∗)(t) (2.25)

satisfies in GOP time the SDE

dX(ϕ) = 4 dϕ + 2
√

X(ϕ) dŴϕ (2.26)

for ϕ ∈ [0, ϕ(T )] with X(0) = S̄(δ∗)(0) > 0, where

dŴϕ(t) = 1
2

√
α(t) dŴ (t) (2.27)

for t ∈ [0, T ], see Platen (2003b). It follows from (2.26)
that the discounted GOP process X is in GOP time a squared
Bessel process of dimension four, see Revuz and Yor (1999).
Therefore, the discounted GOP process S̄(δ∗) = {S̄(δ∗)(t), t ∈
[0, T ]} in (2.22) is a time transformed squared Bessel process
of dimension four, see Platen (2002). It is important to see
that the discounted GOP is, in fact, the time transform of a
fundamental diffusion process with explicitly known transition

density. Here it should be emphasized that we did not impose
any major modelling assumptions on the primary security
dynamics.

Of course, in general, the GOP time will be random. To
construct a particular model one has to specify the discounted
GOP drift process α = {α(t), t ∈ [0, T ]}. For instance,
when |θ(t)|2 in (2.20) is a deterministic function of time,
then we obtain a Black–Scholes type dynamics for the GOP.
However, there is general empirical evidence that the volatility
is stochastic. Also, if the discounted GOP drift is assumed
to be deterministic one obtains a stochastic volatility model
that is still quite realistic, see Heath and Platen (2002). To
model stochastic volatility with a second factor we specify the
discounted GOP drift in a particular way.

3. MMM with log-normal scaling
3.1. Basic formulation

According to Platen (2003a) the GOP can be interpreted as
a diversified accumulation index for the stock market. To
model the discounted index with a more realistic GOP time
we now consider a generalization of the MMM proposed
in Platen (2001). The MMM incorporates the structure
previously described by using a squared Bessel process of
general dimension ν > 2, see (2.22) or (2.26).

For this version of the MMM the discounted GOP process
S̄(δ∗) = {S̄(δ∗)(t), t ∈ [0, T ]} is given by the equation

S̄(δ∗)(t) = (Z(t))
ν
2 −1, (3.1)

see (2.17). Here Z = {Z(t), t ∈ [0, T ]} is a time transformed
squared Bessel process of dimension ν > 2 and satisfies the
SDE

dZ(t) = ν

4
γ (t) dt +

√
γ (t)Z(t) dŴ (t) (3.2)

for t ∈ [0, T ]. Here the scaling factor γ = {γ (t), t ∈ [0, T ]}
is an adapted stochastic process that will be specified later on.

By application of the Itô formula together with (3.1)
and (3.2) for the benchmarked savings account

Ŝ(0)(t) = S(0)(t)

S(δ∗)(t)
(3.3)

we see that

dŜ(0)(t) = d((Z(t))1− ν
2 ) =

(
1 − ν

2

)√
γ (t)Z(t)

1
2 − ν

2 dŴ (t)

(3.4)
for t ∈ [0, T ]. Using the Itô formula together with (2.1), (3.1)
and (3.2), the SDE for the GOP S(δ∗)(t) is given by

dS(δ∗)(t) = S(δ∗)(t)

[(
r(t) +

(
ν

2
− 1

)2

γ (t)

(
S(δ∗)(t)

S(0)(t)

) 2
2−ν

)
dt

+

(
ν

2
− 1

)√
γ (t)

(
S(δ∗)(t)

S(0)(t)

) 1
2−ν

dŴ (t)

]
(3.5)

for t ∈ [0, T ]. The SDE (3.5) is useful for certain types
of derivative security valuation problems that are formulated
using path dependent properties of the underlying GOP
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process S(δ∗). By comparing (3.5) and (2.22) it follows that
the discounted GOP drift is of the form

α(t) =
(

ν

2
− 1

)2

γ (t)(Z(t))
ν
2 −2 (3.6)

for t ∈ [0, T ]. Note that for dimension ν = 4 the discounted
GOP drift does not depend on Z.

3.2. Log-normal scaling

Since traders are very familiar with the log-normal process
that drives the Black–Scholes dynamics let us assume that the
scaling γ = {γ (t), t ∈ [0, T ]} follows a log-normal process
that satisfies the SDE

dγ (t) = γ (t)
[
µ(t) dt + β(t)

(
�(t) dŴ (t)

+
√

1 − �(t)2 dW̃ (t)
)]

(3.7)

for t ∈ [0, T ]. Here W̃ is a Wiener process that is independent
of W 1, . . . , Wd and therefore Ŵ . The scaling appreciation rate
µ = {µ(t), t ∈ [0, T ]}, the scaling correlation � = {�(t), t ∈
[0, T ]} and the scaling volatility β = {β(t), t ∈ [0, T ]} are
assumed to be given deterministic functions of time.

This formulation for the dynamics of the scaling is chosen
mainly for tractability reasons because, as mentioned above,
log-normal dynamics are well-understood by practitioners and
because it produces a natural growth behaviour that should be
expected for the discounted GOP drift.

For this two-factor model the main stochastic volatility
effect is produced by the squared Bessel process Z

of dimension ν that is used to model the discounted
GOP, see (3.1). However, derivative security prices and
corresponding implied volatilities are also influenced by the
stochastic properties of the discounted GOP drift. For
example, we will see later on that higher scaling volatilities
typically produce larger curvatures for the implied volatilities
of European options. In the case when the dimension of ν

does not equal four, then by (3.6) there is a correlation effect
produced between the discounted GOP drift and the GOP.

3.3. Zero coupon bonds

Let us consider one of the simplest examples of a derivative
security, namely a zero coupon bond that pays one unit of
the domestic currency at the maturity date T̄ ∈ [0, T ].
According to (2.15) and using (3.1), the fair benchmarked
price P̂T̄ (t, Z(t), γ (t)) for a zero coupon bond is given by
the formula

P̂T̄ (t, Z(t), γ (t)) = E

(
1

S(δ∗)(T̄ )

∣∣∣∣At

)
= E

(
1

S(0)(T̄ )(Z(T̄ ))
ν
2 −1

∣∣∣∣At

)
(3.8)

for t ∈ [0, T̄ ]. The corresponding price PT̄ (t, Z(t), γ (t)) in
domestic currency is then

PT̄ (t, Z(t), γ (t)) = S(0)(t)(Z(t))
ν
2 −1P̂T̄ (t, Z(t), γ (t))

(3.9)

for t ∈ [0, T̄ ]. For simplicity we will assume that the
short rate process r is deterministic. Using (3.2) and (3.7)
the benchmarked pricing function P̂T̄ (·, ·, ·) satisfies the
Kolmogorov backward equation

L0P̂T̄ (t, Z, γ ) = 0 (3.10)

for (t, Z, γ ) ∈ (0, T̄ ) × (0, ∞)2 with boundary condition

P̂T̄ (T̄ , Z, γ ) = 1

S(0)(T̄ )Z
ν
2 −1

(3.11)

for (Z, γ ) ∈ (0, ∞)2. For this partial differential equation
(PDE) the operator L0 when applied to a sufficiently smooth
function f : (0, T̄ ) × (0, ∞)2 → � is given by

L0f (t, Z, γ ) =
[

∂

∂t
+

νγ

4

∂

∂Z
+ γµ(t)

∂

∂γ
+

1

2
γZ

∂2

∂Z2

+ �(t)β(t)γ
3
2 Z

1
2

∂2

∂Z∂γ
+

1

2
β(t)2γ 2 ∂2

∂γ 2

]
f (t, Z, γ )

(3.12)

for (t, Z, γ ) ∈ (0, T̄ ) × (0, ∞)2.
As explained in section 3.1, the benchmarked savings

account process Ŝ(0) = {Ŝ(0)(t), t ∈ [0, T ]}, see (3.3)
and (3.4), is an (A, P )-local martingale. Since it is non-
negative it is an (A, P )-supermartingale, see Karatzas and
Shreve (1991). This means that

Ŝ(0)(t) � E(Ŝ(0)(T̄ )
∣∣At )

for t ∈ [0, T̄ ], T̄ ∈ [0, T ]. Consequently, combining (3.1)
and (3.9) it is apparent that

PT̄ (t, Z(t), γ (t)) � S(0)(t)

S(0)(T̄ )
(3.13)

for t ∈ [0, T̄ ]. For the above two-factor model figure 1 shows
the difference 1

S(0)(T̄ )
−PT̄ (0, Z(0), γ (0)) between the inverted

deterministic savings account and the fair zero coupon bond
as a function of the maturity date T̄ and initial value Z(0). For
this and subsequent plots the default parameter values used
were: ν = 4, r(t) = 0.04, µ(t) = 0.04, β(t) = 1.0 and
�(t) = 0 with initial values Z(0) = 1.0 and γ (0) = 0.04.
Note that the quantities displayed in figure 1 are positive as is
expected from (3.13). For initial values Z(0) close to 1 and
maturities less than two years the differences are very close
to zero. These results together with those described in the
remaining part of this paper were obtained using numerical
PDE methods. The fact that the differences shown in figure 1
are not zero demonstrates that the process Ŝ(0), see (3.4), is a
strict (A, P )-local martingale. This conclusion also follows
from results described in Revuz and Yor (1999).

This important observation means that the Radon–

Nikodym derivative process  = {(t) = Ŝ(0)(t)

Ŝ(0)(0)
, t ∈ [0, T ]}

for what would be the risk neutral pricing measure Q, where
dQ

dP
|AT

= (T ), is not an (A, P )-martingale. Consequently,
for this model there is no equivalent risk neutral martingale
measure. For additional commentary on these issues and to
see why the benchmark approach is more general than the risk
neutral approach we refer to Platen (2002).
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Figure 1. Difference between the inverted savings account and fair
bond.
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Figure 2. Implied volatilities for call options as a function of K and
T̄ .

3.4. European options

Consider a European call option on the GOP S(δ∗) with
strike K and maturity date T̄ ∈ [0, T ]. Using the
benchmarked fair pricing formula (2.15) the benchmarked
price ĉT̄ ,K(t, Z(t), γ (t)) for this contingent claim is then

ĉT̄ ,K(t, Z(t), γ (t)) = E

((
1 − K

S(0)(T̄ )Z(T̄ )
ν
2 −1

)+∣∣∣∣At

)
(3.14)

for t ∈ [0, T̄ ]. The corresponding option price cT̄ ,K(t, Z(t),
γ (t)) in domestic currency is obtained from (2.16) and is given
by

cT̄ ,K(t, Z(t), γ (t)) = S(0)(t)(Z(t))
ν
2 −1ĉT̄ ,K(t, Z(t), γ (t))

(3.15)
for t ∈ [0, T̄ ]. Because of the form of (3.2) and (3.7) the
benchmarked pricing function ĉT̄ ,K(·, ·, ·) satisfies the PDE

L0ĉT̄ ,K(t, Z, γ ) = 0 (3.16)
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Figure 3. Implied volatilities for call options as a function of K and
�.

for (t, Z, γ ) ∈ (0, T̄ ) × (0, ∞)2 with boundary condition

ĉT̄ ,K(T̄ , Z, γ ) =
(

1 − K

S(0)(T̄ )Z
ν
2 −1

)+

(3.17)

for (Z, γ ) ∈ (0, ∞)2.
To see the type of implied volatility curves that are

produced by the MMM with log-normal scaling figure 2
displays a term structure of implied volatilities for European
calls as a function of the maturity date T̄ and strike K . These
results were obtained by using the fair zero coupon bond price,
see (3.9), to infer the discount factor used in the Black–Scholes
formula. The implied volatilities shown in figure 2 are very
close to those observed for European index options in real
markets as, for example, shown in Cont and da Fonseca (2002).
In particular, the at-the-money movements of the implied
volatility surface are captured by the log-normal scaling.

Our formulation of the MMM with log-normal scaling
allows for the Wiener processes driving the components Z(t)

and γ (t) to be correlated. Figure 3 shows implied volatilities
for European calls as a function of the strike K and correlation
�(t) = � for a fixed maturity date T̄ = 0.25. Note that
by increasing � the slope of the implied volatility curve as
a function of the strike K also increases. A strong negative
correlation produces a strongly negatively skewed implied
volatility curve whereas a strong positive correlation generates
a strongly positively skewed implied volatility curve.

To demonstrate the effect of making the scaling process γ

stochastic we show in figure 4 implied volatilities for European
calls as a function of the strike K and scaling volatility
β(t) = β. The choice β(t) = 0 for t ∈ [0, T ] means
that the scaling process γ will be deterministic. Figure 4
indicates that an increase in the scaling volatility β(t) = β

increases the curvature of the implied volatility curve viewed
as a function of the strike K . By allowing for time dependent
scaling volatilities this curvature can be controlled for different
maturities.

The fair pricing formulae (2.16) can also be used to
compute the fair price of a European put option. Thus, for
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Figure 4. Implied volatilities for call options as a function of K and
β.

a European put option on the GOP with strike K and maturity
date T̄ ∈ [0, T ] the benchmarked fair price p̂T̄ ,K(t, Z(t), γ (t))

is given by

p̂T̄ ,K(t, Z(t), γ (t)) = E

((
K

S(0)(T̄ )(Z(T̄ ))
ν
2 −1

− 1

)+∣∣∣∣At

)
(3.18)

for t ∈ [0, T̄ ]. The corresponding option price in domestic
currency, see (2.1), takes the form

pT̄ ,K(t, Z(t), γ (t)) = S(0)(t)(Z(t))
ν
2 −1p̂T̄ ,K(t, Z(t), γ (t))

(3.19)
for t ∈ [0, T̄ ]. Using (3.9), (3.15) and (3.19) it can be shown
that

pT̄ ,K(t, Z(t), γ (t)) = cT̄ ,K(t, Z(t), γ (t)) − S(0)(t)(Z(t))
ν
2 −1

+ KPT̄ (t, Z(t), γ (t)) (3.20)

for t ∈ [0, T̄ ]. This is the put–call parity relation established
for fair European option prices. By using this result it is evident
that if the fair price of a zero coupon bond is used as the discount
factor in the Black–Scholes formula, then the same implied
volatilities will be returned for both European put and call
options using the benchmark framework.

3.5. Binary options

As an example of an important class of path-dependent
contingent claims we now consider the pricing of up-and-out
and down-and-out binary options on the GOP under the MMM
with log-normal scaling.

For maturity T̄ ∈ (0, T ] and levels U > S(δ∗)(t) and
L < S(δ∗)(t) let τU and τL be stopping times given by

τU = inf{s � 0 : (s, S(δ∗)(s)) �∈ [0, T̄ ) × (0, U)} (3.21)

and

τL = inf{s � 0 : (s, S(δ∗)(s)) �∈ [0, T̄ ) × (L, ∞)}. (3.22)

Using the fair pricing formula (2.16) the benchmarked fair
price for an up-and-out binary option with level U is then

b̂inUO,T̄ ,U (t, S(δ∗)(t), γ (t)) = E

(
1{τU =T̄ }
S(δ∗)(T̄ )

∣∣∣∣At

)
(3.23)

for t = [0, T̄ ]. The corresponding benchmarked fair price for
a down-and-out binary option with level L is given by

b̂inDO,T̄ ,L(t, S(δ∗)(t), γ (t)) = E

(
1{τL=T̄ }
S(δ∗)(T̄ )

∣∣∣∣At

)
(3.24)

for t ∈ [0, T̄ ]. Note that because the definition of a binary
option on the GOP relates to path-dependent properties of
S(δ∗) rather than the process Z, the pricing formulae (3.23)
and (3.24) are expressed using the vector (S(δ∗), γ ) rather than
(Z, γ ), as was used for the pricing of zero coupon bonds and
European options.

Using (3.5) and (3.7) the benchmarked fair pricing
function b̂inDO,T̄ ,L(t, S(δ∗), γ ) satisfies the PDE

L0
∗b̂inDO,T̄ ,L(t, S(δ∗), γ ) = 0 (3.25)

for (t, S(δ∗), γ ) ∈ (0, T̄ ) × (0, ∞)2 with boundary conditions

b̂inDO,T̄ ,L(t, S(δ∗), γ ) = 1

S(δ∗)
(3.26)

for (S(δ∗), γ ) ∈ (0, ∞)2 and

b̂inDO,T̄ ,L(t, L, γ ) = 0 (3.27)

for (t, γ ) ∈ (0, T̄ ) × (0, ∞). Here L0
∗ is the operator

that applied to a sufficiently smooth function f : [0, T̄ ] ×
(0, ∞)2 → � has the form

L0
∗f (t, S(δ∗), γ ) =

[
∂

∂t
+ S(δ∗)(t) +

{
r(t) +

(
ν

2
− 1

)2

γ

×
(

S(δ∗)

S(0)(t)

) 2
2−ν

}
∂

∂S(δ∗)
+ µ(t)γ

∂

∂γ

+
1

2

(
ν

2
− 1

)2

γ (S(δ∗))2

(
S(δ∗)

S(0)(t)

) 2
2−ν ∂2

∂(S(δ∗))2

+ �(t)β(t)

(
ν

2
− 1

)
S(δ∗)γ

ν
2

(
S(δ∗)

S(0)(t)

) 2
2−ν ∂2

∂S(δ∗)∂γ

+
1

2
β(t)2γ 2 ∂2

∂γ 2

]
f (t, S(δ∗), γ ) (3.28)

for (t, S(δ∗), γ ) ∈ (0, T )×(0, ∞)2. A similar PDE formulation
holds for the up-and-out binary options.

To illustrate the effects of using the MMM with log-normal
scaling for binary options we show in figure 5 price differences
between this version of the MMM and corresponding Black–
Scholes prices for down-and-out binary options on the GOP.
These differences are shown for different values for the Black–
Scholes binary option prices and the maturity date T̄ , obtained
for a fixed scaling volatility β(t) = 1.0 and zero correlation
�(t) = 0.
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Figure 5. Differences between MMM and Black–Scholes prices for
down-and-out binary options for different maturities T̄ .

We will now explain what is meant by corresponding
Black–Scholes prices. To do this we first introduce the Black–
Scholes down-and-out binary option price formula given by

binBS
DO,T̄ ,L

(t, S(δ∗)(t), σ )

= e−r(T̄ −t)

(
N(d2(t)) −

(
L

S(δ∗)(t)

) 2r

σ2 −1

N(d2(t))

)
, (3.29)

where

d2(t) = ln( S(δ∗)(t)

L
) + (r − σ 2

2 )(T̄ − t)

σ
√

T̄ − t

for t ∈ [0, T̄ ], see Rubinstein and Reiner (1991). Here N(·) is
the standard Gaussian distribution function and σ denotes the
Black–Scholes volatility.

For all of the binary option examples described here
the corresponding Black–Scholes binary option prices are
obtained by choosing implied volatilities such that the prices
for an at-the-money forward European call option for the
MMM with log-normal scaling and the Black–Scholes model
coincide. Here an at-the-money forward European call option
is one that for t = 0 has a strike K

PT̄ (0,Z(0),γ (0))
for fixedK = 1.0.

Different Black–Scholes binary option prices are obtained
by varying the level L with L < S(δ∗)(0) and maturity date T̄

for fixed model parameters and initial valuesS(δ∗)(0) = 1.0 and
γ (0) = 0.04. Figure 5 displays the typically shaped curves
for down-and-out binary options observed in real markets. It
can be seen that for a fixed scaling volatility β(t) = 1.0
the price differences between the MMM and corresponding
Black–Scholes prices become smaller as the time to maturity T̄

shortens. A similar type of plot can be obtained for up-and-out
binary options. For up-and-in and down-and-in binary options
hump-shaped price differences are also obtained. However,
for these two types of securities the Black–Scholes prices
are generally higher than the corresponding MMM prices and
therefore the price differences are negative.

It is important to study the impact of non-zero correlation
between the index S(δ∗)(t) and the scaling factor γ (t). For this
purpose we show in figure 6 the price differences between the
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Figure 6. Differences between MMM and Black–Scholes prices for
down-and-out binary options for different correlation �.
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Figure 7. Differences between MMM and Black–Scholes prices for
down-and-out binaries for different scaling volatility β.

MMM with log-normal scaling and corresponding prices for
Black–Scholes down-and-out binary options as a function of
the Black–Scholes binary option price and correlation �(t) =
�. These results were produced using a fixed maturity date
T̄ = 0.5 and scaling volatility β(t) = 1.0. This figure
shows that for � < 0 decreasing the correlation increases the
magnitude of the hump-shaped price difference curve. For
� = 0.5 the hump-shaped price difference curve becomes
inverted to some degree. Finally, we display in figure 7 price
differences between the MMM with log-normal scaling and
corresponding Black–Scholes prices for down-and-out binary
options as a function of the Black–Scholes binary option price
and scaling volatility β(t) = β with a fixed maturity date
T̄ = 0.5 and zero correlation �(t) = 0. Inspection of figure 7
demonstrates that, in general, increasing the scaling volatility
β increases the price differences. Note also that for β(t) =
0 positive price differences are still obtained. This shows
that even for the MMM with deterministic scaling a typical
hump-shaped price difference curve is obtained, although the
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magnitudes of the price differences are much smaller than
for larger scaling volatilities. However, the MMM with log-
normal scaling provides more realistic modelling capabilities
and is better equipped to handle the dynamic movements of
implied volatilities.

4. Conclusion

The MMM with log-normal scaling can be used to price
a range of European and path-dependent contingent claims
on a diversified index. Here the pricing system applied is
based on the benchmark approach for which the reference
unit chosen is the GOP. This pricing methodology is more
general than risk neutral pricing. In fact, for the model under
consideration there is no equivalent risk neutral martingale
measure. Numerical results document the type of implied
volatility term structures that are obtained for this two-factor
model. Further computations show the price differences
produced between the proposed model and corresponding
Black–Scholes prices for a class of down-and-out binary
options. These results generate patterns that are typically
observed in real markets. Further research will focus on
refining the model formulation for the stochastic scaling
component and applying the pricing procedures for a wide
class of path-dependent derivative securities.
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