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Abstract

The price of financial assets are, since [1], considered to be de-
scribed by a (discrete or continuous) time sequence of random vari-
ables, i.e a stochastic process. Sharp scaling exponents or unifractal
behavior of such processes has been reported in several works [2] [3] [4]
[5] [6]. In this letter we investigate the question of scaling transforma-
tion of price processes by establishing a new connexion between non-
linear group theoretical methods and multifractal methods developed
in mathematical physics. Using two sets of financial chronological time
series, we show that the scaling transformation is a non-linear group
action on the moments of the price increments. Its linear part has a
spectral decomposition that puts in evidence a multifractal behavior
of the price increments.

1 Introduction

One of the pillars of modern physics is the covariance of theories under certain
group actions. What is particular to a given application, such as initial
and boundary conditions usually breaks the symmetries of the theory. The
symmetry group of observed data is therefore usually much smaller than
the covariance group of the theory. An example is hydrodynamics where
the equations are invariant under space-time translation and scaling, but
where the solutions are not, in general, invariant. For theories that are
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covariant under scaling (to be specific, we can think of Navier-Stokes or
Korteweg-De Vries equation) the situation is clear: the scaling properties,
such as the spectral decomposition of the solution at each time are given
by the scaling properties of the initial condition, the boundary conditions
and external forces. The study of scaling transformation properties in the
domain of economics and finance is more complicated because the evolution
equations (or even the theory) governing the dynamics are largely unknown.
It is thus not possible, in this case, to separate these scaling properties into
a general property of an underlying theory and into what is particular to
the situation under study. The observed financial chronological data results
at least to some extent, of the particularities of each market and not only
from a general abstract dynamics. Therefore there is no a priori reason to
expect the data to exhibit simple properties under scaling transformation.
Keeping this simple observation in mind, we will base our analysis of the
scaling transformation on methods adapted to physical systems with complex
behavior:

i) Multifractal analysis of fully turbulent systems introduced in [7] and within
that approach further developed inversion techniques developed in [8] (see
also [9]).
ii) Non-linear group representation theory developed in [10] and applied to
many non-linear evolution equations in mathematical physics (see [11] for
recent contributions).

We apply these methods to two sets of financial chronological series :
1) Foreign exchange rate DM/$: The data set provided by Olsen and

Associates contains worldwide 1,472,241 bid-ask quotes for US dollar-German
mark exchanges rates from 1 October 1992 until 30 September 1993. Tick
by tick data are irregularly spaced in recorded time. To obtain price values
at a regular time, we use linear interpolation between the two recorded time
that immediately precede and follow the regular time. We obtain in this way,
for a regular time of 15 seconds, 1, 059, 648 data. Our study focuses on the
average price which is the mean of the bid and ask price.

2) Stock index CAC 40: The data set provided by the “Société de Bourse
Française” contains 1, 045, 890 quotes of the CAC 40 index from 3 January
1993 until 31 December 1996. Tick by tick data are regularly recorded every
30 seconds, during opening hours (everyday from 10 am until 5 pm except
week ends and national holidays). Our data base consist of the daily registers
to which a constant has been subtracted such that the value at 10am is equal
to the value of the previous day at 5pm. The subtracted jump process (with
jumps at fixed times) can be analyzed on its own. This separation allows for
a finer analysis of the rest of the process.
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Using these data sets, we obtained three new results. First, the scaling
transformation of the moments of the observed probability distribution is a
non-linear representation that is well approximated by a linear representa-
tion, for small scaling parameters. This linear representation turns out to be
diagonal. Secondly, the function of the order of the moment, defined by the
spectrum of the generator is (non trivially) concave. This shows, by definition
[7], that the data are multifractal. Note that the concavity in the case of FX
market (DM/$) can partially be deduced from [12] and is confirmed, inde-
pendently of our work, by [13]. Our third new result is an explicit expression
of the family of probability distributions of price increments corresponding
to different time increments.

For larger values of the scaling parameter, the linear approximation breaks
down and the non linear terms of the representation has to be considered.
The analysis of this letter can also be applied to the SP 500 index, where
the results should be compared to the (unifractal) scaling behavior found in
[4]. It should also be compared with the, from the point of view of finance,
more fundamental approach of stochastic time transformation (subordinate
processes) that were applied to SP500 [14] [15]. These points are left for
future investigations.

2 The mathematical framework

We suppose that the financial variable is described by a stochastic process
(u(t))t≥0 such that the set of increments u(t + τ) − u(t), τ ≥ 0 has a well
defined transformation property under scaling of the time increment τ , τ 7→
a τ , a > 0. To avoid complications, irrelevant for the quite crude application
reported in this letter, we suppose that (u(t))t≥0 is stationary. Moreover,
we will only consider the absolute value |u(t + τ) − u(t)| of increments. Let
w(τ) = |u(τ)−u(0)|, τ ≥ 0. This means that for each (scaling) a > 0, there is
a map Ta of the set W = {w(τ)|τ ≥ 0} such that Ta(w(τ)) = w(aτ). A group
action T of the scaling (dilatation) group ID (the set of strictly positive real
numbers) on the set W is then defined, i.e Tab(x) = Ta(Tb(x)) and Te(x) = x

for a, b ∈ ID, x ∈ W, where e = 1 is the identity element in ID. In the cases
under consideration in this letter, it follows from the observed time series
that the estimated probability distribution pw(τ) in IR of w(τ) is different for
different τ > 0. This is enough to ensure the existence of the action T , and
moreover shows that T gives a group action T̄ , on the set M = {pw(τ)|τ ≥ 0}
of probability distributions, defined by T̄a(pw(τ)) = pw(aτ).

The group action T̄ is not linear, in spite of its appearance. To ex-
plicit properties of the scaling action T̄ , we change the coordinates of the
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elements in M. As in the case of fully developed turbulence, we use the
moments as coordinates. For q ∈ M, let the moment vector be the sequence
S(q) = (Sr(q))r≥0, where Sr(q) =

∫ ∞

0
xrq(x)dx and r ∈ IR+. Here we suppose

that the set M of probability measures is such that Sr(q) exists for all orders
r and moreover that q is determined by its moments of order r ∈ IR+ (which
is the case if for example the Fourier Transform of elements in M are quasi
analytic). Let S be the image (in the space C(IR+) of continuous real func-
tions on IR+) of M under the coordinate transformation S. The image U of
the group action T̄ is given by Ua = S ◦ T̄a◦S−1, i.e Ua(S(pw(τ))) = S(pw(aτ)).

In the case U is a linear diagonal representation, it has the form Ua = U
(1)
a ,

where for given real numbers ζr with r ∈ IR+:

U (1)
a (m) = (aζr mr)r≥0 (1)

for a ∈ ID and m ∈ C(IR+), mr corresponding to a moment of order r. We
note that {ζr|r ∈ IR+} is the spectrum of the generator of the representa-
tion U (1). When U is a non linear perturbation of U (1), there are algorithms
permitting its construction. However they are outside the scope of this let-
ter [10] [11]. For commodity we denote sr(τ) = Sr(pw(τ)) which is the r-th
component of Uτ (S(pw(1))). An accurate and explicit approximation of the
inverse transformation S−1, of the moment vectors sr(τ) to probability distri-
bution pw(τ) has been developed in [8] [9] [16]. This permits to obtain directly
from experimental data, an explicit formula for the family M = {pw(τ)}τ>0

of probabilities. In fact, for each τ ∈ IR+ we can determine an element pw(τ)

by the formulas:

x pw(τ)(x) = p̄(ln x)

α(r, τ) =
d ln sr(τ)

dr
(2)

ln p̄(α(r, τ)) = ln sr(τ) − r
d ln sr(τ)

dr
−

1

2
ln(2π) −

1

2

d2 ln sr(τ)

dr2
. (3)

where r ∈ IR+.

3 Results

When the representation U is linear it follows from expression (1) that
ln sr(τ) = Ar + ζr ln τ , where Ar and ζr are independent of τ . Figure (1A)
shows that, in the case of FX DM/$, this is satisfied, to a good approximation
with time increments τ and moments of order r in the interval 11 ≤ τ ≤ 2896
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Figure 1: (1A): ln sr(τ) vs ln τ for r = 1 . . . 10 in the case of FX DM/$
index. The scaling law ln sr(τ) = Ar + ζr ln τ displayed as straight lines for
11 ≤ τ ≤ 2896 minutes (delimited by the orange arrow) gives ζr as the slope.
(1B): ζr determined by scaling law in the case of FX DM/$ index.
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Figure 2: (2A): ln sr(τ) vs ln τ for r = 1 . . . 10 in the case of CAC40 index.
The scaling law ln sr(τ) = Ar + ζr ln τ displayed as straight lines for 1 ≤ τ ≤
2048 minutes (delimited by the orange arrow) gives ζr as the slope. (2B): ζr

determined by scaling law in the case of CAC40 index.
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minutes and 1 ≤ r ≤ 10. In contrast, for CAC40 the domain of validity of
the linear approximation also contains the small values of τ : 1 ≤ τ ≤ 2048
minutes and 1 ≤ r ≤ 10 (see figure (2A)). Outside this domain in the (r, τ)
plane, the linear representation approximation breaks down. Inside the do-
main of validity of the linear representation approximation, the spectrum of
the generator is presented in figure (1B) (resp. (2B)) in the case of FX DM/$
(resp. CAC40). The function r 7→ ζr is in both cases (non trivially) con-
cave, which by definition (see [7]) shows that the system has a multifractal
behavior.

Finally, we present in figure (3A) and figure (3B) (resp. figure (4A) and
figure (4B)) probability densities (M.A.M) given by (2) and (3), for τ = 8
minutes and τ = 512 minutes in the case of FX DM/$ index (resp. CAC40).
In all the cases, the experimental probability distribution is well approxi-
mated, for a large range of price increments, by the corresponding probabil-
ity distributions in the family {pw(τ)}τ>0 constructed by the inverse method
developed in [9] and [16]. Other commonly used probability distributions are
also presented in the figures for illustration.
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Figure 3: (3A): Presentation of the probability density function at τ = 8
minutes for FX DM/$ index and comparison with empirical data. (3B):
Same presentation at τ = 512 minutes for FX DM/$ index.
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Figure 4: (4A): Presentation of the probability density function at τ = 8
minutes for CAC40 index and comparison with empirical data. (4B): Same
presentation at τ = 512 minutes for CAC40 index.
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