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Apparent scaling
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Abstract. A number of authors have reported empirically observed scaling laws
of the absolute values of log returns of stocks and exchange rates, with a scaling
coefficient in the order of 0.58–0.59. It is suggested here that this phenomenon
is largely due to the semi-heavy tailedness of the distributions concerned rather
than to real scaling.
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1 Introduction

Scaling laws, empirical or theoretical, are of widespread interest in mathemat-
ics, physics, geology, and other fields, and in particular in turbulence (cf. for
instance Frisch 1995). Fairly recently, with the access to large and detailed data
sets from the financial markets, and also with the recognition of striking sim-
ilarities between key observational features of such data and data from studies
of turbulence, a search for scaling laws in finance has begun, see Müller et al.
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(1990, more precisely, p. 58), Ghashgaie et al. (1996), Guillaume et al. (1997),
and Piccinato et al. (1998) (cf. also Barndorff-Nielsen 1998a).

The papers by M̈uller et al. (1990), Guillaume et al. (1997), and Piccinato
et al. (1998) report empirical evidence for scaling of absolute log returns with a
scaling indexH close to 0.58, both for foreign exchange rates and for short term
interest rate futures contracts. A summary of their findings is given in Sect. 2.

The purpose of the present note is to point out that these latter findings may,
at least to a significant extent, be explained not as a real scaling phenomenon but,
somewhat surprisingly, as being due to (semi-)heavy-tailedness and, to a lesser
extent, skewness of the relevant empirical distributions determined by the rates.

Distributions of returns of financial assets can generally be well fitted by the
normal inverse Gaussian (NIG) law (Barndorff-Nielsen 1997, 1998b; Barndorff-
Nielsen and Jiang 1998; Prause 1997; Rydberg 1997), and we base our discussion
on this law which, furthermore, allows explicit analytic calculations.

In Sect. 3 relevant properties of theNIG law are reviewed and in Sect. 4 we
consider the behaviour of the absolute first moment of theNIG Lévy process. The
second order cumulant of the symmetricNIG Lévy process behaves according to
an exact scaling with indexH = 1

2 but for the absolute moment this is only true
asymptotically fort , the time indicator, tending to∞. And for parameter values
in the range that is typical of many financial regimes the absolute moments are
in fact close to 0.58, as will be demonstrated in Subsect. 4.1.

Subsection 4.2 provides illustrations of the effect of skewness of the distri-
butions. The conclusion is that skewness will make adherence to the apparent
scaling behaviour more manifest.

As a model for the development of a financial asset theNIG Lévy process is
generally more realistic than the Brownian motion; but, it does not capture the
prevalent quasi long range dependence of financial time series. However, this
appears of secondary importance for the point we wish to make.

2 Empirical scaling power laws in finance

One important point in the modelling of high-frequency data in Finance is to
analyze volatility on different time scales. Volatility of high-frequency data is
sometimes (e.g in Mandelbrot 1963, Müller et al. 1990 and Guillaume et al. 1997)
defined not as a standard deviation but as the average of absolute logarithmic
price changes

v(∆t) =
1

N (∆t)

N (∆t)∑
i=1

|x (ti ) − x (ti −∆t)| (1)

wherex (ti ) = log(Sti /S0) and ti = i∆t , i = 1, . . . ,N (∆t). We chooseN (∆t)
such that the length of the observation period∆t ·N (∆t) is constant. Considering
the absolute logarithmic price changes of FX rates one often empirically finds a
scaling power law which relates the volatility over a given time interval∆t to
the size of this interval by the formula
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v(∆t) =

(
∆t
∆T

)H

v(∆T ) (2)

for an arbitrarily chosen∆T . Equation (2) yields

logv(∆t) = H log(∆t/∆T ) + logv(∆T ). (3)

Hence we can estimate the exponentH by the linear regression coefficient of
log(v(∆t)) against log(∆t/∆T ). The scaling power law is observed over several
orders of magnitude in time. For major free floating currencies the empirical
exponentH is usually about 0.58 (M̈uller et al. 1990; Guillaume et al. 1997).
See Schnidrig and Wuertz (1995) for USD/DEM exchange rates. Therefore it
deviates markedly from the exponent 1/2 which is obtained in the case of the
Brownian motion.

3 Normal inverse Gaussian laws

We summarize some properties of the normal inverse Gaussian laws. For further
information see Barndorff-Nielsen (1997, 1998a).

3.1 Theoretical properties

The normal inverse Gaussian distribution with parametersα, β, µ and δ is
denotedNIG(α, β, µ, δ) and is the distribution onR having density function

g(x ;α, β, µ, δ) = a(α, β, µ, δ) q
(x − µ

δ

)−1
K1{δα q

(x − µ

δ

)
} exp{βx} (4)

whereq(x ) =
√

1 + x2 and the norming constant has the simple form

a(α, β, µ, δ) = π−1α exp{δ
√
α2 − β2 − βµ}; (5)

furthermoreK1 is the modified Bessel function of the third kind and index 1. (For
the definiton and properties of the Bessel functionsKν , ν ∈ R, see for instance
Abramowitz and Stegun (1965).) The domain of variation of the parameters is
given byµ ∈ R, δ ∈ R+, and 0≤ |β| < α. Obviously δ is a scaling andµ a
location parameter, whereasβ is an asymmetry parameter andα± β determines
the heaviness of the tails, cf. formula (7) below.

It follows immediately from (4) and (5) that the cumulant generating function
of the normal inverse Gaussian distribution is

K(u;α, β, µ, δ) = δ{
√
α2 − β2 −

√
α2 − (β + u)2} + µu. (6)

Thus, in particular, ifx1, . . . , xm are independent normal inverse Gaussian
random variables with common parametersα and β but having individual
location-scale parametersµi and δi (i = 1, . . . ,m) then x+ = x1 + . . . + xm is
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again distributed according to a normal inverse Gaussian law, with parameters
(α, β, µ+, δ+), µ+ =

∑m
i=1µi andδ+ =

∑m
i=1 δi .

The NIG distribution (4) has semiheavy tails; specifically,

g(x ;α, β, µ, δ) ∼ const . |x |−3/2 exp{−α |x | + βx} as x → ±∞ , (7)

as follows from the well known asymptotic relation for the Bessel functions
Kν(x )

Kν(x ) ∼
√
π/2 x−1/2e−x as x → ∞ . (8)

A further important characterization of the normal inverse Gaussian lawNIG(α,
β, µ, δ) is the following. Letb(t) =

(
b1(t), b2(t)

)
be a bivariate Brownian motion

starting at (µ,0) and having drift vector (β, γ) whereβ ∈ R andγ > 0. Further-
more, letu denote the time whenb1 first reaches levelδ > 0 and letx = b2(u).
Thenx ∼ NIG(α, β, µ, δ) with α =

√
β2 + γ2.

It is often of interest to consider alternative parametrisations of the normal
inverse Gaussian laws. In particular, lettingα = δα and β = δβ, we have that
α and β are invariant under location-scale changes, and whenα, β , µ, δ con-
stitute the parametrisation of interest we shall writeNIG [α, β , µ, δ] instead of
NIG(α, β, µ, δ). In terms of this alternative parametrisation the first four cumu-
lants ofNIG [α, β , µ, δ] are

κ1 = µ + δ�/(1 − �2)1/2 (9)

κ2 = δ2/{α(1 − �2)3/2} (10)

κ3 = 3δ3�/{α2(1 − �2)5/2} (11)

κ4 = 3δ4(1 + 4�2)/{α3(1 − �2)7/2} (12)

where� = β/α, which is invariant sinceβ/α = β/α. Recall thatκ1 andκ2 denote
mean and variance. It follows that the standardised third and fourth cumulants,
i.e. skewness and kurtosis, have the form

γ1 = κ3/κ
3/2
2 = 3α −1/2�/(1 − �2)1/4 (13)

γ2 = κ4/κ
2
2 = 3α −1(1 + 4�2)/(1 − �2)5/4. (14)

For some purposes it is useful, instead of the classical skewness and kurtosis
quantities (11) and (12), to work with the alternative steepness and asymmetry
parametersξ andχ defined by

ξ =
(
1 + δ

√
α2 − β2

)−1/2
(15)

and

χ =
β

α
ξ. (16)

Like γ1 andγ2, these parameters are invariant under location-scale changes and
the domain of variation for (χ, ξ) is thenormal inverse Gaussian shape triangle

{(χ, ξ) : −1< χ < 1, 0< ξ < 1}.
The distributions withχ = 0 are symmetric, and the normal and Cauchy laws
occur as limiting cases for (χ, ξ) near to (0,0) and (0,1), respectively.
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3.2 Applicability to finance

As illustration of the applicability of theNIG laws in finance we consider some
data sets, on foreign exchange rates and on stocks.
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Fig. 1. Density and log-density of theNIG distributions estimated for 3 hour returns of USD/DEM
exchange rates in 1996
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Fig. 2. Q-Q Plots of 3 hour USD/DEM exchange rate returns and of daily returns of Deutsche Bank
stocks (1988–1994)

The analyzed intraday (FX) rate is part of the HFDF96 data set provided by
Olsen & Associates (1997) and covers the year 1996. To cope with the bid- and
ask-spreads in the high-frequency data set we define the log-price at timet as
usual as

xt =
logPbid,t + logPask,t

2
.

Finally, to take periods without trading into account, we have removed the zero-
returns in these periods. Here it would be interesting to apply more sophisticated
methods, e.g. the transformation to a business time scale, but this would require
additional information which is not available. We estimated theNIG distribution
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from 3 hour returns of the USD/DEM exchange rate using the algorithm described
in Prause (1997) and obtain the followingNIG distribution

α = 415.9049, β = 1.512, δ = 0.0011, µ = 0.000026,
(17)

α = 0.4574, β = 0.00166, χ = 0.00301, ξ = 0.8282.

Figure 1 shows the empirical and the estimatedNIG and normal distributions
and the corresponding Q-Q plot as well as a Q-Q plot for Deutsche Bank stock
returns are given as Fig. 2. Obviously, the estimatedNIG distributions fit the
return distributions very well.

Figures 3 and 4 exhibit the maximum likelihood estimates of the shape param-
etersχ andξ for the USD/DEM exchange rates and for those stocks incorporated
in the German stock market index DAX, respectively. For later, note in particular
that theξ values lie in the neighbourhood of 0.7–0.9.
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Fig. 3. Shape triangle of theNIG distributions and positions of the maximum likelihood estimates
of (χ, ξ) for USD/DEM returns with different time lags (1, 3, 12, 24, 36, 60 measured in hours)

Note also thatξ decreases with increasing time lag, reflecting the stylized
feature of aggregational Gaussianity (the normal law corresponds to (χ, ξ) =
(0,0)).

4 NIG Lévy processes

Let z (t) be theNIG Lévy process, i.e. the process with stationary independent
increments for whichz (1) is distributed asNIG(α, β, µ, δ). See Protter (1990)
for an introduction to Ĺevy processes. From the form (6) of the cumulant func-
tion of NIG(α, β, µ, δ) it is immediate that for anyt > 0, z (t) has distribution
NIG(α, β, tµ, tδ).

Note that for increasing timet the corresponding value ofξ converges to zero.
Hence, in accordance with the empirical results shown in Fig. 3, the kurtosis of
the distribution decreases.
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Fig. 4. Shape triangle of theNIG distributions and positions of the maximum likelihood estimates
of (χ, ξ) for daily returns of the 30 German stocks in the DAX (1988–1994)

4.1 Symmetric NIG Lévy processes

Initially, let us consider the caseµ = β = 0, in which instance the distribution
NIG(α,0,0, δ) of z (1) is symmetric around 0. To calculate its absolute first
moment we recall that the Bessel functionsKν(x ) satisfy the equation

K ′
ν(x ) = −1

2
{Kν−1(x ) + Kν+1(x )}.

Hence, in particular, we have

K ′
0(x ) = −K1(x ). (18)

By the substitutionu = (1 +x2/δ2)1/2 and using (18) we find

E{|z(1)|} = 2π−1αeα

∫ ∞

0
x (1 + x2/δ2)−1/2K1

(
α(1 + x2/δ2)1/2

)
dx

= 2π−1δ2αeα

∫ ∞

1
K1(αu)du

= 2π−1δeα

∫ ∞

α

K1(u)du

= 2π−1δeαK0(α).

Hence, letting
ψ(x ) = xex K0(x ) (19)

we have
E{|z(t)|} = 2π−1α−1ψ(tα). (20)
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It is well-known that

− logx for x ↓ 0
K0(x ) ∼ √

2/π x−1/2e−x for x → ∞.

(21)

It follows that φ(x ) = logψ(ex ) has linear asymptotes both forx → −∞ and
for x → ∞, the slopes of the asymptotes being, respectively, 1 and 1/2. The
formula for the slope is

φ′(x ) = 1 +ex − ex K1(ex )
K0(ex )

(22)

and a number of values ofφ′(x ) is given in Table 1.

Table 1. Slope of log E{|z(t)|}.

ξ α log α φ′(log α)

0.99 0.0203 -3.9 0.771
0.95 0.108 -2.23 0.690
0.90 0.235 -1.45 0.646
0.85 0.384 -0.957 0.618
0.80 0.563 -0.575 0.598
0.75 0.778 -0.251 0.582
0.70 1.05 0.049 0.568
0.65 1.37 0.315 0.557
0.60 1.78 0.577 0.548
0.55 2.31 0.837 0.539
0.50 3.00 1.10 0.532
0.45 3.94 1.37 0.526
0.40 5.25 1.66 0.520
0.35 7.16 1.97 0.515
0.30 10.1 2.31 0.511
0.25 15.0 2.71 0.508

The remarkable point is that forξ values in the range 0.7–0.9 (cf. Figs. 3
and 4) the slope of log E{|z(t)|} is close to the empirically observed of 0.58
(cf. Sect. 2).

4.2 Skewed NIG Lévy processes

In this section we describe the approximate scaling power law of Lévy processes
based onNIG estimates for the USD/DEM foreign exchange (FX) rate described
in Sect. 3.2.

We define the Ĺevy processz (t) by taking theNIG estimate (17) as the
distribution of z (1) where t = 1 corresponds to 3 hours. The distribution of
z (t) corresponding to time points from 10 minutes to two months is given by
NIG(α, β, tµ, tδ). In contrast to the symmetric case, considered in the previous
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subsection, an explicit expression for the mean of|z (t)| is not available and we
have therefore to determineE{|z (t)|} by numerical integration. The result is
shown in Fig. 5 together with the fitted regression line which has slope 0.5705,
close to the empirically observed slopes reported in Sect. 2. Compare Fig. 5 with
the graphs in M̈uller et al. (1990, p. 1196) and Guillaume et al. (1997, p. 115).
From a statistical point of view, the empirical scaling power law and the ap-
proximate scaling power laws ofNIG Lévy processes are difficult to distinguish.

••••••••••••••••••••••••••••••••••••••••••••••••••
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Fig. 5. Approximate scaling power law of theNIG Lévy process with parameters estimated from the
3 hour returns of USD/DEM exchange rates

Log-returns of financial assets are usually only slightly skewed. A question
of interest is, what the scaling behaviour ofNIG Lévy processes looks like if
the NIG distribution is more skewed. To analyze approximate scaling power
laws of more skewedNIG processes, we consider several values of the skewness
parameterχ, different from the value 0.00301 used in Fig. 5, but keeping the
same values ofµ, δ, ξ whereξ = 0.828.

The results are shown in Fig. 6. The adherence to a scaling law is enhanced
by the skewness. Note also, that the skewedNIG Lévy motions have higher
scaling coefficients. It does not matter if the skewness is negative or positive.

5 Conclusion

Although theNIG Lévy processes considered here do not capture all “stylized
features” of, for instance, foreign exchange markets, they do represent the ob-
served return distributions well and provide an explanation of the empirical scal-
ing power law. Recently, models of this type have been examined with a view
towards option pricing and risk measurement (see e.g. Eberlein and Prause 1998).
Developments of the models, that incorporate further stylized features—in partic-
ular the volatility clustering and the quasi long range dependence—are considered
in Barndorff-Nielsen (1998b), Barndorff-Nielsen and Shephard (1999) (see also
Nicolato and Prause 1999).
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