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Abstract

Recent empirical evidence suggests that stock market returns are predictable from a variety of

financial and macroeconomic variables. However, with two exceptions this predictability is based

upon a linear functional form. This paper extends this research by considering whether a nonlinear

relationship exists between stock market returns and these conditioning variables, and whether this

nonlinearity can be exploited for forecast improvements. General nonlinearities are examined using a

nonparametric regression technique, which suggest possible threshold behaviour. This leads to

estimation of a smooth-transition threshold type model, with the results indicating an improved in-

sample performance and marginally superior out-of-sample forecast results. D 2001 Elsevier Science

Inc. All rights reserved.

JEL classification: G12; G13
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1. Introduction

An increasing amount of empirical evidence points to the conclusion that stock market

returns can be predicted by a range of financial and macroeconomic variables. Recent

studies (e.g. Balvers, Cosimano, & McDonald, 1990; Breen, Glosten, & Jagannathan, 1990;
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Campbell, 1987; Campbell & Hamao, 1992; Cochrane, 1991; Fama & French, 1989;

Ferson & Harvey, 1993; French, Schwert, & Stambaugh, 1987; Glosten, Jagannathan, &

Runkle, 1993; Keim & Stambaugh, 1986; Pesaran & Timmerman, 1995) have shown that

this conclusion holds across a variety of stock markets and time horizons despite its

implication for market efficiency.1

In a recent advancement Pesaran and Timmerman (1995, 2000) using a linear recursive

modelling strategy examined the robustness of predictability of US and UK stock market

returns by simulating the behaviour of investors who search in ‘real time’ for a model that can

forecast stock returns. In each time period the regression model is reviewed, with some

variables always included in the regression model, thus being viewed a priori important while

others are selected according to certain criteria such as the Akaike and Schwarz information

criteria. These variables are then used to perform one-step ahead forecasts. Thus, an investor

is open-minded as to which variables should be included in the information set. Pesaran and

Timmermann reported evidence of predictability in both US and UK stock markets which

could have been exploited by investors.

However, whilst in each time period the regression variables are reviewed for inclusion

in the forecast model, the functional form of the regression is not reexamined. Indeed the

vast majority of extant work examines the predictability of stock returns by financial and

macroeconomic variables using a linear regression framework. This despite increasing

evidence of nonlinear behaviour in asset returns (e.g., Abhyankar, Copeland, & Wong,

1997, provide a summary of recent evidence of nonlinearity). Recent exceptions to this is

the work of Qi (1999) who uses a neural network method, and thus provides flexibility in

the choice between linear and nonlinear models, to examine the predictability of US stock

returns, and Perez-Quiros and Timmermann (2000) who use a Markov switching model to

examine returns in large and small US firms. Thus, while in the Pesaran and Timmermann

framework the investor knows the functional form but is open-minded to the conditioning

set, an alternative is for the investor to select the set of financial and macroeconomic

variables, whilst being open-minded to the underlying specification. This paper continues

the latter theme and following estimation of a linear model, examines the relationship

between stock market returns and various financial and macroeconomic variables using a

model-free nonparametric estimator. Following this procedure we then examine the

resulting plots to see if this suggests any evidence of nonlinear form, and from this we

tentatively propose a parametric nonlinear model of smooth transition threshold form. More

specifically, a model based upon the smooth transition regression (STR) and autoregressive

STR (STAR) type models is estimated (see Chan & Tong, 1986; Granger & Teräsvirta,

1993; Teräsvirta, 1994; Teräsvirta & Anderson, 1992), referred to here as a STARX model

as exogenous variables are used as explanatory variables, but with an autoregressive

transition variable.

1 Poterba and Summers (1988) argue that the idea that predictable components in share prices arise as a result

of rational variation in expected excess returns is not inconsistent with the concept of market efficiency. While

Balvers et al. (1990) construct a general equilibrium model relating asset returns to macroeconomic fluctuations in

a context that is consistent with efficient markets.
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The remainder of this paper is organised as follows, Section 2 briefly describes the

data, and examines in greater detail the empirical methodology, including the non-

parametric and nonlinear regression models. Section 3 presents our results and Section

4 summarises and concludes.

2. Data and empirical methodology

2.1. Data

The stock market index data analysed here is S&P 500 monthly index returns from the

period January 1970 to March 1995, with the sample period from April 1995 to March 2000

being used in the forecasting exercise.2 While the following monthly financial and macro-

economic data are used to attempt to predict the returns process, the 3-month Treasury bill

(T-bill), the 12-month T-bill, unemployment, industrial production, consumer price index and

money supply M1. All data were tested for the presence of unit roots using the test

Augmented Dickey–Fuller tests. The results suggest a single unit root in each series, except

the stock market index returns series, where a unit root is present in the levels (price) data,

thus to ensure stationarity all relevant data are differenced.3

2.2. Linear model

We begin the examination of the data by using a standard linear regression model of the

following form:

xt ¼ a0 þ
Xm
i¼1

aizt�i þ et ð1Þ

where xt is stock market returns and zt is a vector which contains the exogenous variables

described in the previous section. Initially we consider a lag length of six for each of the right-

hand side variables, with lags being eliminated on the basis of individual significance test,

while joint significance tests are performed on the final specific model, information criteria

such as the AIC and BIC were also used to inform appropriate lag lengths decisions.

2.3. Nonparametric estimation

To consider whether linearity is the appropriate functional form we proceeded to consider

nonparametric regression of the returns processes against the significant exogenous variables

2 Analysis was also conducted on Dow Jones Industrial Average (DJIA) monthly returns, with the results

being qualitatively similar to those reported for the S&P 500 returns and are noted in subsequent footnotes.
3 Unit root test results are suppressed for space consideration, but available upon request from the author.
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as identified using the linear model above.4 The nonparametric procedure is based upon the

estimation of a probability density function, pioneered by Rosenblatt (1956), with applica-

tions to regression work by Nadaraya (1964), Stone (1977) and Watson (1964).5 If we again

consider our conditional mean equation we have Eq. (2):

xt ¼ f ðzt�iÞ þ et ð2Þ

where f (zt� i) includes the significant variables identified from Eq. (1), although in

principle it could include autoregressive and moving average terms. Whilst parametric

estimation of xt involves specifying a specific functional form for f(�), an alternative

approach is to estimate the function via some smoothing operation with no functional

form specified. The method of estimation chosen here is to use a weighted average as

such (Eq. (3)):

x̂t ¼
XT
j¼1

wjtzt�i;
XT
j¼1

wjt ¼ 1 ð3Þ

where the weights accorded depend upon the proximity of the points xt to given zt� i

values. Whilst a variety of weighting schemes are available, the scheme chosen here is

one of the more popular methods and that largely used in other studies (see Pagan &

Schwert, 1990), namely the Nadaraya–Watson estimator (Eq. (4)):6

f ðxÞ ¼
Xn
i¼1

xiKðzi � z=hÞ=
Xn
i¼1

Kðzi � z=hÞ ð4Þ

where K(�) is the kernel weighting function, and h defines the bandwidth or ‘smoothing

parameter’ which determines the degree of smoothness imposed upon the estimation, and

is a function of the sample size (h! 0, T!1). Commonly, the kernel is a probability

density function such that K(�)	 0 and
R
K(x)dx= 1, while the optimum kernel function

and bandwidth selections minimise the integrated mean square error (IMSE). The choice

of kernel used here is the Epanechnikov (1969) kernel which is the optimal kernel based

4 Although in principle variables found to be insignificant under linear estimation could be significant under

nonlinear estimation, we follow the reasoning in Granger and Teräsvirta (1993) that if the data generating process

is truly nonlinear then fitting a linear model would overfit the data, resulting in more significant parameters than

required by the correct nonlinear specification.
5 Recent books and review articles on nonparametric regression include Delgado and Robinson (1992), Härdle

(1990), Prakasa Rao (1983), Silverman (1986) and Ullah (1988).
6 The earliest was that of Rosenblatt (1956) who introduced the general class of kernel estimators. The kernel

estimator is a sum of curves placed at the data points, where the kernel determines the shape of the curves, and the

bandwidth is essentially a generalisation of a histogram bandwidth. Other schemes include the basic histogram,

where the data are partitioned before estimation, however discontinuities in the histogram prevent estimation of

derivatives; and the nearest-neighbour method which ignores the influence of more distant points.
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upon a calculus of variations solution to minimising the IMSE of the kernel estimator.

The Epanechnikov kernel is given by:

KðxtÞ ¼
3

4
ffiffiffi
5

p
� �

1� 1

5
x2j

� �
if x2j < 5:0; 0 otherwise ð5Þ

where the general asymptotically unbiased and mean squares consistency of the kernel has

been established by Prakasa Rao (1983) for the case of independent observations, and by

Robinson (1983) for dependent observations. More specifically, the kernel estimator is

consistent under the following conditions (Eq. (6); where all integrals are defined over the

range {�1, 1}):Z
KðxÞdx ¼ 1;

Z
xKðxÞdx ¼ 0;

Z
x2KðxÞdx < 1; limn!1h ! 0;

limn!1nhj ! 1: ð6Þ

That is, the kernel function K(�) is a twice differentiable ‘Borel-measurable’ bounded real-

valued function symmetric about the origin, the bandwidth vector, h, approaches zero as

the sample size approaches infinity, and the product of the bandwidth and the sample size

approaches infinity as n approaches infinity. The optimum bandwidth selection (i.e., the

bandwidth that minimises the IMSE) is given by Eq. (7):

h
opt
j ¼ cjsjn�1=pþ4 ð7Þ

where cj refers to a constant scaling factor that depends upon the kernel function K(�) and
on the underlying data process, sj is the standard deviation of x and p is the number of

regressors. Previous nonparametric studies have imposed a value for c in accordance with

that suggested by Silverman (1986) to approximate the optimal choice of bandwidth.

However, the value of c is strictly data dependent and so we use an automatic bandwidth

selection procedure that has been shown to minimise the IMSE, namely the leave-one-out

cross-validation procedure, which is defined in Eq. (8):7

CVðhÞ ¼
Xn
i¼1

ðyi � f̂ ðx�i; cÞÞ2 ð8Þ

where f̂ (x � i, c) denotes the leave-one-out estimator evaluated for a particular value of c,

and follows from Eq. (5) with the i-th observation excluded. It has been shown (Stone,

1974, 1984) that, asymptotically, the bandwidth that minimises the leave-one-out CV

function, CV(h), also minimises the IMSE.

7 The cross-validation method of bandwidth choice relies on the established principle of out-of-sample

predictive validation. The basic algorithm involves removing any single value of xi from the sample and

computing the conditional mean at the xi from the remaining sample values, and choosing h such that the IMSE is

at the minimum.
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2.4. STARX model

In order to attempt to provide some nonlinear parametric form for examining the

predictability of stock market returns using financial and macroeconomic data, we consider

a version of the general class of STR and STAR models (see Chan & Tong, 1986; Granger

& Teräsvirta, 1993; Teräsvirta, 1994; Teräsvirta & Anderson, 1992) that allows for smooth

transition between regimes of behaviour. This model is favoured over the simple threshold

models which imposes an abrupt switch in parameter values, first, because only if all

traders act simultaneously will this be the observed outcome, for a market of many traders

acting at slightly different times a smooth transition model is more appropriate. Second, the

STAR model allows different types of market behaviour depending on the nature of the

transition function. In particular the logistic function allows differing behaviour depending

on whether returns are positive or negative, while the exponential function allows differing

behaviour to occur for large and small returns regardless of sign. The former function is

motivated by considerations of the general state of the market, while the latter function may

be motivated by considerations of market frictions, such as transactions costs, which create

a band of price movements around the equilibrium price, with arbitrageurs only actively

trading when deviations from equilibrium are sufficiently large.8 Given that we are

attempting to use exogenous variables to explain returns but with an autoregressive

transition variable this model is termed STARX (smooth transition threshold autoregres-

sive-exogenous) and the model is given by:

xt ¼ p0 þ
Xp
i¼1

pizt�1 þ q0 þ
Xp
i¼1

qizt�1

 !
Fðxt�dÞ þ et ð9Þ

where F(xt� d) is the transition function. As already stated, two transition functions are

considered. The logistic function is given as follows, with the full model thus referred to as a

Logistic STARX (or LSTARX) model:

Fðxt�dÞ ¼ ð1þ expð�gðxt�d � cÞÞÞ�1; g > 0 ð10Þ

which allows a smooth transition between the differing dynamics of positive and negative

returns, where d is the delay parameter, g the smoothing parameter, and c the transition

parameter. This function allows the parameters to change monotonically with xt� d. As

g!1, F(xt� d) becomes a Heaviside function: F(xt� d) = 0, xt� d� c,F(xt� d) = 1, xt � d >c,

and Eq. (9) reduces to a TARX(p) model, As g! 0, Eq. (9) becomes a linear model of

order p.

8 An alternative ESTAR motivation is provided by consideration of market depth, whereby the process by

which the market can clear reasonable quantities of stock at market prices may differ from the process required to

trade large quantities of stock outside the range of price necessary to clear the market.
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The second transition function considered is exponential, with the resulting model referred

to as the Exponential STARX (or ESTARX) model:

Fðxt�dÞ ¼ 1� expð�gðxt�d � cÞ2Þ; g > 0: ð11Þ

whereby the parameters in Eq. (11) change symmetrically about c with xt� d. If g!1 or

g! 0 the ESTARX model becomes linear. This model implies that the dynamics of the

middle ground differ from those of the larger returns. The ESTAR model is a generalisation

of the regular exponential autoregressive (EAR) model of Haggan and Ozaki (1981), where

q0 = c = 0, this generalisation making the EAR model location invariant. The ESTARX

model, which identifies differing behaviour resulting from larger and small trades, may

therefore capture the effects of transactions costs on trader behaviour or market depth. For

example, whether deviations from the equilibrium price are sufficiently large to allow

profitable trade. Alternatively, whether a larger range of trades can be represented by the

same process, in which case the market may be said to be ‘deep’, or whether the market is

characterised by limited depth, in which case the middle regime of the ESTARX model

may be narrow.

To specify the STARX models we use the variables identified as significant from Eq.

(1), while a delay parameter of one is adopted. The rationale for this is that we would

expect the stock market to react within 1 month to news that alters regime.9 Finally,

estimation of STAR models, and in particular the smoothing parameter g, has in practice

been problematic (see Granger & Teräsvirta, 1993; Teräsvirta, 1994; Teräsvirta &

Anderson,1992). In the LSTAR model, a large value for g results in a steep slope of the

transition function at c, and a large number of observations in the neighbourhood of c are

therefore required to estimate g accurately. A result of this is that convergence of g may be

slow, with relatively large changes in g having only a minor effect upon the shape of the

transition function. A solution to this, suggested by Granger and Teräsvirta (1993),

Teräsvirta (1994) and Teräsvirta and Anderson (1992), is to scale the smoothing parameter,

g, by the standard deviation of the transition variable, and similarly in the ESTAR model to

scale by the variance of the transition variable. Thus, the LSTARX and ESTARX model

becomes, respectively, Eqs. (100) and (110):

Fðxt�dÞ ¼ ð1þ expð�gðxt�d � cÞ=sðxt�dÞÞÞ�1 ð100Þ

Fðxt�dÞ ¼ ð1� expð�gðxt�d � cÞ2=s2ðxt�dÞÞÞ: ð110Þ

Estimation of the STARX models is by nonlinear least squares. If convergence is obtained,

the validity of the model is then evaluated. This includes examination of the parameter values,

9 A more formal procedure for specifying STAR models is outlined in Granger and Teräsvirta (1993),

Teräsvirta (1994) and Teräsvirta and Anderson (1992). The results of which support both the presence of STAR-

type nonlinearity and a delay parameter of one, full results are available upon request.
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particularly ensuring that c, the transition value, is within the range of {xt}, and testing for the

significance of the explanatory terms. Additionally, the Akaike and Schwarz criterion can be

used to guide the selection of competing models (see the examples in Teräsvirta, 1994).10

3. Empirical results

Table 1 presents the empirical results for the linear regression model, Eq. (1). As noted

above, a lag length of up to six was initially considered, with restrictions made on the basis of

individual and joint significance tests and information criteria. The results show that for S&P

500 returns the fourth lag of the 3-month Treasury bill, the first and fourth lag of the 12-month

Treasury bill, and the first lag unemployment have significant predictive power, while there are

no significant lags of industrial production, CPI, and MI.11 Table 1 also provides some simple

specification diagnostics (the Akaike information criterion) and residual serial correlation and

heteroscedasticity tests, which are insignificant.

The analysis conducted so far presumes a linear structure between returns and the lagged

financial and macroeconomic variables. However, there may exist a nonlinear relationship

between returns and these significant variables. For this purpose we conduct a series of

Table 1

Conditional mean linear model estimates and residual tests

Linear model (S&P 500) Residual tests

a0 .0093* (.0025)

3-month T-bill (� 4) .01660* (.0054) AIC �3.4543

12-month T-bill (� 1) � .0105* (.0046) LM1 0.30 (0.58)

12-month T-bill (� 4) � .0277* (.0062) LM6 5.76 (0.45)

Unemployment (� 1) .0257* (.0128) Het 1.77 (0.99)

For equation specification see Eq. (1). LM1/6 refer to the Breusch–Godfrey Serial Correlation LM Test, while

Het is the White heteroscedasticity test. All tests statistics are the chi-squared statistic with the associated P

value in parentheses.

* Denotes 5% significance.

10 Further examination of the models can be conducted through examining the dynamic properties of the

model. First, computing the roots of the characteristic polynomials corresponding to F(xt� d) = 0 and F(xt� d) = 1,

we examine the dynamic properties of each regime, and second, evaluating the long-run dynamic properties of the

model. This latter procedure can only be performed numerically, where data are generated from the model in

question after setting the error term equal to zero, with a sequence of observed values of the series acting as

starting values. This procedure could result in a unique single point stable equilibrium, a limit cycle where a set of

values repeat themselves perpetually, or diverge (in which case the model is rejected). A final dynamic case is that

the model generates chaotic realisations, in which case a small change in the initial values results in divergent,

though stable, limit points.
11 For DJIA returns the second and fifth lag of the 3-month Treasury bill, the first, second, fifth and sixth lag of

the 12-month Treasury bill, and the first lag CPI are significant, while there are no significant lags of industrial

production, unemployment and MI. Thus, according to our results here there is no predictive power in either

industrial production or money supply for stock market returns.
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nonparametric regressions (as described above in Section 2.3) and plot the estimated

conditional mean to examine the relationship between stock returns and the identified

significant financial and macroeconomic variables. These plots are reported in Fig. 1 and

appear to show a nonlinear relationship between the returns on the stock index and returns on

the T-bills, except the first lag of the 12-month T-bill. In general, a negative relationship is

observed, but with a middle horizontal regime. For unemployment, however, there appears to

be a positive linear relationship.12

Fig. 1. S&P 500 nonparametric plots.

12 The corresponding plots for the DJIA returns are available upon request from the author. However,

examining these plots a similar pattern appears with a negative relationship between the returns and the interest

rates variables, but with a middle regime, suggesting some nonlinearity. While for the noninterest rate series, in

this case the CPI series, the relationship appears to be a linear one.
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From this nonparametric analysis it appears that a nonlinear relationship may indeed exist

between stock market returns and financial variables, notably interest rate series. These plots

suggest that different regimes of behaviour may exist, with a middle regime that differs from

the outer regimes, perhaps indicating some type of threshold effect. With this mind, we

tentatively examine a threshold model similar in nature to the STAR model of Chan and Tong

(1986), Granger and Teräsvirta (1993), Teräsvirta (1994) and Teräsvirta and Anderson (1992),

which we term here STARX as the model contains exogenous variables, with only the delay

parameter being an autoregressive term. These estimated models as described in Section 2.4

and Eqs. (9)–(11) are reported in Table 2.

Table 2 shows the nonlinear models for S&P 500 returns. Only the 12-month T-bill

series appears in both regimes, whilst the unemployment series appears in the upper and

outer regimes of the LSTARX and ESTARX model, respectively, the 3-month T-bill series

appears in the lower and middle regime. In both models all lagged variable coefficients are

significant at the 5% level, except the fourth lag of the 12-month T-bill series in the

LSTARX model which is only significant at the 10% level. The constants are insignificant,

except the middle regime constant for the ESTARX model. The speed of transition

between regimes parameter, g, is particularly large for the LSTARX model, suggesting

very quick transition between regimes, similar to a standard threshold model, although it is

insignificant. The speed parameter for the ESTARX model, although lower, is statistically

significant. Finally, the threshold parameter is very similar between both models, suggest-

ing regime shifting at similar returns.13 Fig. 2 presents graphical evidence of these results,

with the transition functions of both models plotted. Evident in these figures is the rapid

speed of adjustment between regimes for the LSTARX model, with slower adjustment

noticeable for the ESTARX model. Residual tests show no evidence of remaining serial

correlation or heteroscedasticity in either model, while the Akaike information criterion

supports both nonlinear models over the linear model, and the ESTARX model over the

LSTARX model.

In sum, the nonparametric evidence suggested possible nonlinear threshold behaviour

between stock market returns and financial variables, in particular interest rates. Estimation of

a threshold model variant appears to support this contention, with nonlinear effects

particularly noticeable in 12-month T-bill returns, while the threshold parameter is significant

for both models.

Given estimation of both linear and nonlinear models it is important to compare the in-

sample and out-of-sample performance of these models. Table 3 presents the goodness of fit

13 The results for the LSTARX model for DJIA returns show that all the exogenous variables appear in the

lower regime, except the second lag of the 3-month T-bill, while the same lag, together with the first and sixth lag

of the 12-month T-bill and the first lag of the CPI series are insignificant in the upper regime, with all other

variables significant. For the ESTARX model all exogenous series, except the second lag of the 3-month T-bill and

CPI, appear in the outer regime, while only the CPI series appears in the middle regime, thus the second lag of the

3-month T-bill disappears from the estimated model. As with S&P 500 returns the constant are insignificant, while

in contrast, the transition parameter is only significant for the LSTARX model, although again it is larger. Finally,

the threshold parameters are significant and of similar magnitude.
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measures using the standard methods of root mean squared error, mean absolute error and

mean absolute percentage error. These statistics were computed using a series of recursive

estimates and one-step ahead forecasts, such that the estimation period rolls forward each

period so that the information used in each forecast would be the same information available

to the investor. The results suggest that these nonlinear models provide a better fit to the data

in-sample, with all the forecast statistics being lower for the two nonlinear models than the

linear model for S&P 500 returns. Of the two nonlinear models, the ESTARX model

outperforms the LSTARX model. These results indicate that the nonlinear models considered

are able to account for the substantial nonlinearity inherent in the returns series better than the

linear model.

The second part of Table 3 presents the same exercise for the out-of-sample data between

April 1995 to March 2000, again the statistics are obtained from recursive estimates and

one-step ahead forecasts. These results suggest that for S&P 500 returns there is evidence of

the nonlinear models outperforming the linear model on all of the forecast evaluation

statistics, with the LSTARX model being preferred to the ESTARX model on two of the

three statistics (this contrasts with the in-sample tests where the ESTARX model was

preferred on all measures).14

A final exercise is to compare the forecasting accuracy of the two nonlinear models with

the linear model, and to consider whether the associated forecast errors are significantly

14 The in-sample results for the DJIA are similar to those reported for the S&P 500 returns except on the mean

absolute percentage error where the linear is preferred. However, for DJIA returns the linear model is preferred on

all three out-of-sample forecasts performance statistics.

Table 2

Conditional mean STARX model estimates

Nonlinear models

LSTAR ESTAR Residual tests LSTAR then ESTAR

p0 .0233 (.0228) .0484* (.0215) LSTARX

3-month T-bill (� 4) .0161* (.0054) .0166* (.0055) AIC � 3.4741

12-month T-bill (� 1) � .0614* (.0158) � .0859* (.0120) LM1 0.76 (0.38)

12-month T-bill (� 4) � .1132* (.0459) � .1889* (.0230) LM6 7.64 (0.27)

q0 � .0134 (.0229) � .0389 (.0219) Het 13.67 (0.19)

12-month T-bill (� 1) .0549* (.0164) .0800* (.0128) ESTARX

12-month T-bill (� 4) .0876** (.0464) .1648* (.0236) AIC � 3.4931

Unemployment (� 1) .0296* (.0126) .0287* (.0128) LM1 0.00 (0.97)

g 39.614 (199.8947) 1.8851* (0.8058) LM6 5.88 (0.44)

c � .0726* (.0163) � .1079* (.0056) Het 6.50 (0.77)

For equation specification see Eqs. (9)–(11). LM1/6 refer to the Breusch–Godfrey Serial Correlation LM Test,

while Het is the White heteroscedasticity test. All tests statistics are the chi-squared statistic with the associated P

value in parentheses.

* Denotes 5% significance.

** Denotes 10% significance.
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different, this is particularly pertinent given the small differences between the forecast

statistics in Table 3. In order to conduct this analysis we perform the equality of forecast

accuracy test of Diebold and Mariano (1995).15 Given two forecast errors {eit}{ejt},

Diebold and Mariano define the forecast loss differential as dt = eit� ejt where a test of

Fig. 2. STARX transition functions.

15 We are grateful to an anonymous referee for drawing our attention to this test.
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equal forecast accuracy, i.e., E[eit] =E[ejt] is equivalent to the mean of the loss differential

being zero. Following Diebold and Mariano, the large sample mean of the loss

differential, d̄ is approximately normally distributed with mean m and variance 2pfd(0)/
T, where the large sample N(0,1) statistic for the null hypothesis of equal forecasting

accuracy is given by Eq. (12):

S1 ¼
dffiffiffiffiffiffiffiffiffiffiffiffi

2pf̂ dð0Þ
T

q ð12Þ

where f̂d(0) is consistent estimator of fd(0). Given the potential for serial correlation in the loss

differential, d, a consistent estimator of 2pfd(0) is obtained by taking a weighted sum of the

sample autocovariances (Eq. (13)):

2pf̂ dð0Þ ¼
XðT�1Þ

t¼�ðT�1Þ
1

t
SðTÞ

� �
ĝdðtÞ ð13Þ

where 1(t/S(T)) is the lag window, S(T) the truncation lag and ĝd(t) the sample

autocovariances at displacement t. A variety of lag window and truncation lag choices are

available, following Diebold and Mariano the uniform or rectangular lag window is selected

while several truncation lags are considered, these being 5, 10 and 20.16

Fig. 3 presents the loss function for dLSTARX and dESTARX where both are defined as

the linear forecast error minus the nonlinear forecast error. Thus, positive loss differentials

indicate a smaller forecast error for the nonlinear model, which becomes more apparent in

the latter half of the forecast sample. The forecast accuracy equality test statistics for null

hypothesis of dLSTARX being equal to zero are 4.33, 4.66 and 19.35 for truncation lags of

5, 10 and 20, respectively, while the tests statistics for dLSTARX are 3.13, 2.77 and 8.65,

respectively. Thus, all statistics are significant at the 1% significance level. Therefore,

Table 3

In-sample goodness of fit and out-of-sample forecast performance

Measures of in-sample fit Measures of out-of-sample predictive power

Model RMSE MAE MA%E RMSE MAE MA%E

Linear .0423 .0316 218.7990 .0434 .0347 107.2348

LSTARX .0412 .0309 191.2423 .0431* .0344* 106.0918

ESTARX .0408* .0307* 177.8957* .0433 .0345 104.6786*

* Lowest statistic.

16 Diebold and Mariano consider a (k� 1) truncation lag for the k step-ahead forecast errors; however, this is

not feasible with the one step-ahead forecasts considered here.

D.G. McMillan / International Review of Economics and Finance 10 (2001) 353–368 365



despite the relatively small difference in standard forecast performance statistics, the

nonlinear models do provide additional forecasting accuracy over the linear model.

4. Summary and conclusion

This paper has tested for evidence of a nonlinear relationship between stock market

returns and macroeconomic and financial variables, and whether this nonlinearity can be

exploited to improve forecasts of returns. Recent research has reported that stock market

returns can be predicted using various lagged exogenous variables, such as interest rates

and output measures. However, the majority of work in this area has presupposed a linear

functional form, this paper has sought to reevaluate that hypothesis, and examine whether a

nonlinear form can provide better forecasts. A linear model is initially estimated, with the

result that various interest rates and macroeconomic variables provide some predictive

power for S&P 500 returns. These variables are then used to investigate whether a

nonlinear relationship exists using model-free nonparametric methods. The results of this

exercise suggest that a nonlinear relationship does indeed exist between returns and interest

rates, but not between returns and the macroeconomic series. The nonparametric plots

suggest some possible threshold effect between returns and interest rates and thus we

proceed to estimate a STAR-type model, termed STARX. This model supports the

nonparametric results in that a nonlinear form is successfully estimated, with the interest

rate series appearing in both regimes, while the macroeconomic series only appears in one

regime. Tests measuring the in-sample goodness of fit support the nonlinear model over the

linear model, similarly the results for the out-of-sample forecasting performance select the

Fig. 3. Forecast loss differential.
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nonlinear model over the linear alternative, although the forecasting gain is marginal.

Finally, tests of predictive accuracy suggest that although this gain may be marginal it is

statistically significant.

In sum, this paper has reported some evidence of nonlinear predictability of stock market

returns using financial variables, more specifically interest rates. Both the nonparametric plots

and the estimated STARX models suggest the presence of nonlinear behaviour that may be

exploited in forecasting exercises. Results suggest that the nonlinear models outperform the

linear model both in-sample and out-of-sample, although the forecast gain is marginal, it thus

remains an avenue for further research to see if alternative nonlinear forms can provide a

better forecasting performance.

Acknowledgments

We acknowledge the helpful suggestions of the editor and three anonymous referees on an

earlier version of this paper. All remaining errors are our own.

References

Abhyankar, A., Copeland, L. S., & Wong, W. (1997). Uncovering nonlinear structure in real-time stock market

indices. Journal of Business and Economics Statistics, 15, 1–14.

Balvers, R. J., Cosimano, T. F., & McDonald, B. (1990). Predicting stock returns in an efficient market. Journal of

Finance, 45, 1109–1128.

Breen, W., Glosten, L. R., & Jagannathan, R. (1990). Predictable variations in stock index returns. Journal of

Finance, 44, 1177–1189.

Campbell, J. Y. (1987). Stock returns and the term structure. Journal of Financial Economics, 18, 3–37.

Campbell, J. Y., & Hamao, Y. (1992). Predictable stock returns in the United States and Japan: a study of long-

term capital integration. Journal of Finance, 47, 43–67.

Chan, K., & Tong, H. (1986). On estimating thresholds in autoregressive models. Journal of Time Series Analysis,

7, 179–194.

Cochrane, J. H. (1991). Production-bases asset pricing and the link between stock return and economic fluctua-

tions. Journal of Finance, 46, 209–238.

Delgado, M. A., & Robinson, P. M. (1992). Nonparametric and semiparametric methods for economic research.

Journal of Economic Surveys, 6, 201–249.

Diebold, F. X., & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business and Economic

Statistics, 13, 253–265.

Epanechnikov, V. A. (1969). Nonparametric estimation of a multivariate probability density. Theory of Probability

and its Applications, 14, 153–158.

Fama, E. F., & French, K. R. (1989). Business conditions and expected returns on stocks and bonds. Journal of

Financial Economics, 25, 23–49.

Ferson, W. E., & Harvey, C. R. (1993). The risk and predictability of international equity returns. Review of

Financial Studies, 6, 527–566.

French, K. R., Schwert, G. S., & Stambaugh, R. F. (1987). Expected stock returns and volatility. Journal of

Financial Economics, 19, 3–30.

Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the

volatility of the nominal excess return on stocks. Journal of Finance, 48, 1779–1801.

D.G. McMillan / International Review of Economics and Finance 10 (2001) 353–368 367
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