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This article examines the relationship between returns and trading vol-
ume for three petroleum futures contracts. Using daily data on futures
prices and trading volume, the study first tests for linear causality between
returns and volume. The results of this linear causality test show that
futures returns and volume have no predictive power for one another.
However, because the distribution of the returns and volume series pro-
vides some evidence of nonlinear dependence, the study formally tests
for and finds evidence of significant nonlinearities in the returns and
volume for the three petroleum futures contracts. The returns and vol-
ume series are then filtered for linear dependence through the use of a
VAR process. A nonparametric test statistic based on the correlation in-

We thank Andrew C. Szakmary for supplying the data used in this study. We also thank Deborah R.
Kaplan and John Wagster for helpful comments and editorial assistance.

■ Roger A. Fujihara is an Account Manager with the Acacia Group in Fairfax, Virginia.
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tegral reveals significant bidirectional nonlinear causal relationships be-
tween the filtered returns and volume series. Using a third-order moment
test, this study finds that the nonlinear dependence in the futures returns
and volume series arises from the variance, rather than the mean, of the
process. Consequently, the filtered returns and volume series are adjusted
for conditional heteroscedasticity. The study then examines the GARCH-
filtered returns and volume series and finds that, even after adjusting for
volatility effects, there is still strong evidence of bidirectional nonlinear
Granger causality and concludes that the nonlinear process may influ-
ence both the mean and variance of futures returns and volume. The
finding of strong nonlinear causal relationships between petroleum fu-
tures returns and trading volume implies that knowledge of current trad-
ing volume improves the ability to forecast futures prices. Thus, the re-
sults of this study should be useful to regulators, practitioners, and
futures markets participants whose success hinges crucially on the ability
to forecast futures price movements.

INTRODUCTION

This article extends and updates the existing empirical research on the
relationship between asset price variability and volume by examining the
daily returns and volume series for three petroleum futures contracts.
This investigation is important for several reasons. First, causality tests
can provide useful information on whether knowledge of past trading
volume improves short-term forecasts of current and future movements
in futures prices, and vice versa. Second, as noted by Cornell (1981), the
volume-price variability relationship may have important implications for
fashioning new contracts. For example, a positive volume-price variability
relationship implies that a new futures contract will be successful only
to the extent that there is enough price uncertainty associated with the
underlying asset. Third, as noted by Karpoff (1987), price-volume rela-
tionships have important implications for futures markets-related re-
search. For example, Cornell (1981) and Martell and Wolf (1985) show
that price variability affects futures contracts trading volume. Fourth, a
good understanding of futures price movements has significant implica-
tions for asset pricing models, regulators, hedgers, speculators, and other
participants in futures markets.

With the exception of Hiemstra and Jones (1994), all previous in-
vestigations of the relationship between asset price variability and trading
volume use tests that rely on the restrictive assumption of linearity. As
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shown by Baek and Brock (1992), however, these tests generally have low
power against nonlinear relationships and may, therefore, fail to detect
useful nonlinear relationships between asset price variability and trading
volume. Consequently, this study also contributes to the literature on
futures markets by explicitly testing for linear and nonlinear causal rela-
tionships between futures returns and trading volume.

Examining the possibility of nonlinear causal relationships is justified
because the univariate time series of futures prices and trading volumes
are likely to have been generated by nonlinear processes. As noted by
Savit (1989), self-regulating systems are generally characterized by non-
linear processes. To the extent that financial and commodity markets are
self-regulating systems with complex feedback and feedforward loops, the
prices (and volumes) that these markets generate are expected to display
significant nonlinearities. Hinich and Patterson (1985), Scheinkman and
LeBaron (1989), Brock, Hsieh, and LeBaron (1991), and Hsieh (1991),
among others, find evidence of significant nonlinear dependence in asset
returns. Hiemstra and Jones (1992) also report evidence of nonlinearities
in aggregate trading volume. In light of these findings, this study tests for
and finds evidence of nonlinear dependence in the univariate time series
of returns and trading volume for the three petroleum futures, and posits
that the causal relationship between these futures returns and trading
volume is largely of a nonlinear nature. Furthermore, the nonlinearities
appear to influence both the mean and the variance of the time series.

The article proceeds as follows. The next section provides a review
of the theoretical and empirical work on the price-volume relationship.
Then the data are described, followed by a discussion of the methodology
and estimation results of the linear and nonlinear tests in the fourth
section. The final section closes the article by discussing the implications
of the results and directions for future research.

PRIOR RESEARCH ON THE ASSET PRICE-
VOLUME RELATIONSHIP

Theoretical Investigation

There are numerous studies that attempt to explain the possible existence
of a causal linkage between asset prices and trading volume. Copeland
(1976) proposes an approach, later extended by Jennings, Starks, and
Felligham (1981), known as a sequential arrival of information model, in
which a positive bidirectional causal relationship exists between absolute
values of price changes and volume. This model hypothesizes that once
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new innovations reach the marketplace, they are not transmitted to all
market participants at once. Instead, the model assumes that such in-
novations reach only one participant at a time, leading to a final infor-
mation equilibrium only after a sequence of transitional equilibriums
have occurred. According to this model, therefore, lagged absolute values
of price changes may have the ability to predict current trading volume
and vice versa.

A second explanation of the existence of a causal linkage between
asset prices and trading volume is rooted in the mixture of distributions
models of Clark (1973), Epps and Epps (1976), and Harris (1984). In
this framework, asset prices and trading volume are positively correlated
because the variance of the price change on a single transaction is con-
ditional upon the volume of that transaction. Therefore, transaction price
changes are mixtures of distributions, with volume as the mixing variable.
This implies that trading volume and prices change synchronously in re-
sponse to new information.

Another reason given for a causal relationship between asset returns
and trading volume is the noise-trader models of DeLong, Shleifer, Sum-
mers, and Waldmann (1990). These models hold that because noise trad-
ers’ activities are not based upon economic fundamentals, they tend to
cause a temporary mispricing of stock prices in the short run. However,
stock price changes revert to their means because of the disappearance
of the transitory component in the long run. In these models, the positive
causal relationship running from stock returns to trading volume is con-
sistent with the positive-feedback trading strategies of noise traders who
trade on the basis of past price changes. Also, a positive causal relation-
ship from volume to price changes is consistent with the hypothesis made
in these models that price changes are caused by the trading strategies
of noise traders.

Empirical Investigation

Clark (1973) made one of the earliest examinations of the price-volume
relationship in futures markets. Using cotton futures data, he finds a
positive relationship between aggregated volume and the square of price
movement. Cornell (1981) reports positive contemporaneous relation-
ships between changes in price variability and changes in volume for 17
futures contracts. Tauchen and Pitts (1983) examine daily treasury-bill
futures prices and report a positive relationship between trading volume
and the variability of price changes. Grammatikos and Saunders (1986)
study daily data for five foreign currency futures traded on the Interna-
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tional Monetary Market (IMM) and find strong positive contemporane-
ous correlations between trading volume and price variability. Bessem-
binder and Seguin (1993) analyze a cross section of eight futures
contracts and report a strong positive relationship between contempora-
neous volume and price volatility.

The more recent work on the price-volume relationship focuses
mainly on the stock market. Hiemstra and Jones (1994) analyze daily
returns on the Dow Jones Industrial Average and percentage changes in
New York Stock Exchange trading volume over the 1915–1946 and 1947–
1990 periods and find no evidence of linear causality, but report highly
significant bidirectional nonlinear causality. Recognizing that this could
be because of volatility effects associated with the flow of information,
Hiemstra and Jones (1994) estimate an ARCH model to control for the
persistence of volatility in returns. They find that volume continues to
have significant nonlinear explanatory power for stock returns even after
accounting for volatility effects. They also argue that their evidence for
bidirectional nonlinear causality between returns and volume cannot be
explained entirely by a latent-variable effect attributed to the flow of in-
formation. Richardson and Smith (1994) and Lamoureux and Lastrapes
(1994) further investigate this issue. Richardson and Smith apply the
generalized method-of-moments procedure using daily price and volume
data for 30 firms. They fail to find strong evidence to support the infor-
mation-flow approach. Lamoureux and Lastrapes find that accounting for
serial dependence in the flow of information does not eliminate the per-
sistence in conditional volatility for returns.

DATA AND SUMMARY STATISTICS

The data set used in this study consists of daily futures price (PRI) and
trading volume (VOL) series for crude oil, heating oil, and unleaded gas-
oline traded at the NYMEX from December 3, 1984 to September 30,
1993, a total of 2,217 observations. Because the maturity date changes
over time, a single time series is constructed with the use of the nearby
futures contract until the day prior to its last trading day, at which point
the data are rolled over to the next deferred contract.1 The price series
are reexpressed in daily percentage changes as Rt 4 100 2 ln(PRIt,T/
PRIt11,T), and the volume series are expressed as Vt 4 VOLt,T/1000,

1Ma, Mercer, and Walker (1992) discuss the implications of linking futures price series and the
possible biases that may arise when selecting a particular method to roll over futures contracts.
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TABLE I

Summary Statistics for Futures Returns and Volume

Crude Oil

Rt Vt

Heating Oil

Rt Vt

Unleaded Gas

Rt Vt

Mean 0.0144 67.7683 0.0171 21.5036 0.0408 14.9741
SD2 0.0486 0.7579 0.0443 0.2340 0.0411 0.2345
t statistic 0.2970 89.4171a 0.3852 91.9023a 0.9909 63.8459a

Skewness 12.2774a 0.3079a 12.0670a 0.9877a 11.5691a 0.4536a

Kurtosis 39.8308a 10.2238b 37.8726a 1.2999a 27.3933a 10.1716a

Minimum 138.4071 4.4020 135.0938 2.6100 129.8099 0.0050
Maximum 12.3525 224.0120 12.8019 74.4570 10.6913 65.2310

The data are for the period, December 3, 1984 to September 30, 1993. Rt 4 100 2 ln(PRIt,T/PRIt11,T), Vt 4 VOLt,T/1000,
where PRI 4 futures price and VOL 4 futures volume.
SD is the standard deviation of the mean. The t statistic is for the null hypothesis that the mean equals 0.
aSignificant at the 1% level.
bSignificant at the 5% level.

where PRIt,T and VOLt,T are, respectively, the daily futures price and
volume at time t for futures contracts maturing at date T.2

Various descriptive statistics are provided in Table I. The distribution
of the daily returns is negatively skewed and has excess kurtosis relative
to the normal distribution. The volume data, on the other hand, are pos-
itively skewed and display significantly lower values for excess kurtosis.
Some existing evidence [see, for example, Hall, Brorsen, and Irwin
(1989)] suggests that the excess kurtosis is due to a possible time-varying
variance. This hypothesis is examined in the following sections.

METHODOLOGY AND ESTIMATION RESULTS

Tests for Linear Granger Causality

A process is said to exhibit Granger causality when past information on
one variable improves the prediction of a second variable in a better fash-
ion than when a prediction is based on past information on the second
variable only. Consequently, Granger causality between two variables can

2A robust unit root test developed in Phillips (1987) and Phillips and Perron (1988) is used to further
examine volume series in their levels and changes in futures prices. The Phillips–Perron method was
chosen because it is a general test that can be used even in the presence of autocorrelated innovation
sequences. It also handles departures from iid errors. The results of the unit root tests, not reported
here but available from the authors upon request, support the null hypothesis of a unit root in each
of the three futures price series, but reject the null of nonstationary volume time series. Conse-
quently, this study differences the logarithm of prices to ensure stationarity. This transformation is
necessary to avoid spurious results associated with the use of nonstationary variables.
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run in either or both directions. Granger-causality tests are chosen from
a number of alternative causality techniques, because Geweke, Meese,
and Dent (1983) show that the one-sided Granger procedure conducted
with the use of a Wald chi-square test statistic outperforms other causality
tests in a series of Monte Carlo experiments.

Consider the bivariate covariance stationary stochastic process, Zt 4

{Rt, Vt}, where Rt denotes the daily futures returns at time t and Vt is the
daily trading volume at time t.3 Assume that, at time t 1 1, one attempts
to forecast next-period returns, Rt. If Rt is better predicted by adding past
values of trading volume to the past returns series than by using the past
returns series alone, then volume is said to Granger-cause returns. Sim-
ilarly, returns are said to Granger-cause volume if next-period volume, Vt,
is better predicted by the bivariate time series than by the univariate
volume series alone.

More formally, let , , and denote the set of past valuesR* V* Z*t11 t11 t11

of returns, volume, and the bivariate time series, respectively, so that
4 (Rt11, Rt12, . . .), 4 (Vt11, Vt12, . . .), and 4 (Rt11,R* V* Z*t11 t11 t11

Rt12, . . . , Vt11, Vt12, . . .). Let r2(Rt/ ) denote the error in predictingZ*t11

period-t price change given that the predictions are based on the infor-
mation set that includes both past returns and past trading volume time
series.4 By contrast, let r2(Rt/ ) be the error in predicting pe-Z* 1 V*t11 t11

riod-t returns given that the past volume time series is excluded for pre-
diction purposes—in other words, period-t returns are predicted on the
basis of past returns alone. If r2(Rt/ ) , r2(Rt/ 1 ), thenZ* Z* V*t11 t11 t11

volume is said to Granger-cause returns. Similarly, if r2(Vt/ ) , r2(Vt/Z*t11

), then returns are said to Granger-cause volume. FeedbackZ* 1 R*t11 t11

exists when both of the situations prevail, that is, returns and volume
cause each other.

The empirical analysis begins with an examination of the relationship
and the direction of linear causality between futures returns and trading
volume. The multivariate model with linear causality is given by the fol-
lowing vector autoregressive (VAR) representation:

p p1 2

R 4 f R ` f V ` f (1)t o 1,i t1i o 2,i t1i R,t
i41 i41

p p3 4

V 4 f R ` f V ` l (2)t o 3,i t1i o 4,i t1i V,t
i41 i41

3The random process (Y) is said to be covariance stationary if its statistical properties do not change
over time.
4The variance symbol, r2, denotes the prediction error. Basically, r2(Rt/ ) is the minimum mean-Z*t11

square linear prediction error of Rt, given the information set, .Z*t11
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where Rt and Vt are the daily returns and volume, respectively, fi,j’s are
the parameters to be estimated, (f, l) are the conventional zero-mean
error terms with constant variance-covariance matrix, and the pi’s are the
optimal lag lengths. In this study, the pi parameters are obtained with the
use of the final prediction error (FPE) criterion.5

The optimal equations using the FPE criterion are chosen such that

FPE(p̂) 4 min(FPE(s)|s 4 1, . . . , P)

where P is the prespecified upper bound on the maximum examined lag.
In this study, maximum lags of 40 and 20 for P are considered for the
univariate autoregressive process (dependent variable) and the cross-vari-
able (independent variable), respectively.

Linear causal relationships are inferred from eqs. (1) and (2). If Rf2,i

4 0 (i.e., f2,i 4 0 for all i), then eq. (1) implies that past volume has no
influence on futures returns; volume does not cause returns. Similarly,
returns do not cause volume if Rf3,i 4 0 in eq. (2). On the other hand,
if f2,i ? 0 for some values of i, then eq. (1) suggests that volume Granger-
causes returns, implying that the information set used to predict next-
period returns should also include current volume.

The test for causality used in this study is based on the following
Wald test statistic:

12 1ˆ ˆv 4 (c 1 Cb)8 [CR C8] (c 1 Cb), i 4 2,4 (3)(p x)i

where c is a (p 2 1) vector of known constants, C is a (p 2 k) hypothesis
design matrix of known constants, b is a (k 2 1) vector of the regression
coefficients, and Rx is the estimated covariance matrix of the regression
coefficients. A statistically significant v2 implies that lagged values of the
independent or pre-determined variable help to predict the dependent
variable.

Tables II–IV report the estimated parameters of the linear model (1)
and (2). Table II for the crude-oil results shows evidence of unidirectional
linear causality from volume to returns. The v2 statistic that tests the
exclusion of the volume series from the returns equation is significant at
the 5% level, whereas the v2 statistic in the volume equation is insignif-
icant. In the long run, however, crude-oil futures returns and volume
appear to be unrelated because neither the summed impact of volume
(Rf2,i 4 0.0015) on returns nor the summed impact of returns (Rf3,i 4
10.0055) on volume is statistically significant.

The results of the linear causality tests for heating oil, displayed in
Table III, show no causal relationship between returns and volume. Nei-
ther of the v2 statistics is significant at any reasonable statistical level.

5The FPE criterion is based on the minimization of the prediction error.
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TABLE II

Test Results of Linear Causality Between Futures Returns and Volume (Crude Oil)

Dependent
Variable

Coefficients (t statistics)

Rt Vt Q Stat. v2 Stat.

Rt f1,1 4 0.021 (0.53) f1,16 4 0.016 (0.56) f2,1 4 10.004 (11.87)c 1.996 20.35b

f1,2 4 10.018 (10.49) f1,17 4 0.017 (0.54) f2,2 4 0.004 (1.69)c

f1,3 4 10.086 (11.73)c f1,18 4 10.011 (10.41) f2,3 4 10.004 (11.17)
f1,4 4 0.046 (1.54) f1,19 4 0.004 (1.34) f2,4 4 0.000 (0.18)
f1,5 4 10.083 (12.53)a f1,20 4 0.010 (0.29) f2,5 4 0.006 (2.33)b

f1,6 4 0.013 (0.43) f1,21 4 0.034 (0.93) f2,6 4 10.004 (11.35)
f1,7 4 0.030 (1.11) f1,22 4 0.039 (1.37) f2,7 4 0.006 (2.14)b

f1,8 4 10.086 (12.02)b f1,23 4 10.007 (10.19) f2,8 4 10.008 (12.70)a

f1,9 4 10.012 (10.34) f1,24 4 0.007 (0.18) f2,9 4 0.005 (1.44)
f1,10 4 0.052 (1.49) f1,25 4 10.001 (10.04)
f1,11 4 0.051 (1.38) f1,26 4 10.020 (10.81)
f1,12 4 0.030 (0.95) f1,27 4 0.022 (0.81)
f1,13 4 10.004 (10.13) f1,28 4 10.009 (10.18)
f1,14 4 0.060 (2.07)b f1,29 4 10.006 (10.20)
f1,15 4 10.007 (10.21) f1,30 4 10.029 (11.07)

f1,31 4 0.059 (1.08)

R f 4 0.1689 (0.8889)1,i R f 4 0.0015 (0.9003)2,i

Vt f3,1 4 10.0055 (10.0301) f4,1 4 0.471 (16.81)a f4,21 4 0.024 (0.87) 2.102 0.001
f4,2 4 0.023 (0.82) f4,22 4 0.003 (0.12)
f4,3 4 0.118 (4.10)a f4,23 4 0.066 (2.38)b

f4,4 4 0.067 (2.32)b f4,24 4 10.022 (10.81)
f4,5 4 0.005 (0.19) f4,25 4 10.27 (10.97)
f4,6 4 10.019 (10.62) f4,26 4 10.000 (10.01)
f4,7 4 10.045 (11.47) f4,27 4 10.019 (10.72)
f4,8 4 10.002 (10.09) f4,28 4 0.014 (0.53)
f4,9 4 0.039 (1.52) f4,29 4 0.026 (0.89)
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TABLE II (Continued)

Test Results of Linear Causality Between Futures Returns and Volume (Crude Oil)

Dependent
Variable

Coefficients (t statistics)

Rt Vt Q Stat. v2 Stat.

f4,10 4 0.027 (0.99) f4,30 4 10.019 (10.69)
f4,11 4 0.006 (0.21) f4,31 4 0.017 (0.61)
f4,12 4 10.020 (10.71) f4,32 4 10.039 (11.49)
f4,13 4 10.012 (10.42) f4,33 4 0.013 (0.48)
f4,14 4 0.034 (1.12) f4,34 4 0.030 (1.12)
f4,15 4 0.004 (0.15) f4,35 4 0.004 (0.14)
f4,16 4 0.008 (0.27) f4,36 4 10.052 (10.86)
f4,17 4 10.017 (10.62) f4,37 4 10.008 (10.27)
f4,18 4 0.040 (1.43) f4,38 4 0.036 (1.25)
f4,19 4 0.052 (1.89)c f4,39 4 0.048 (1.62)c

f4,20 4 0.028 (1.05) f4,40 4 0.070 (2.60)a

R f 4 10.0055 (10.0301)3,i
aR f 4 0.9741 (79.2971)4,i

The sample period is from December 3, 1984 to September 30, 1993. Rt 4 100 • ln(PRIt,T/PRIt11,T), where PRI 4 futures price and Vt 4 VOLt,T/1000, where VOL 4 futures volume.
The t statistics are reported in parentheses next to the estimated coefficients. The coefficients show the impact of a specific lag of a right-hand variable on the left-hand-side
variable. For example, f2,1 represents the impact of volume (variable 2) on returns (variable 1) for a given lag of 1.
Q Stat. is the Q statistic for serial independence. This statistic is based on the revised Box–Ljung Q test for serial correlation among the regression residuals.
v stat. is the chi-square statistic for testing for the joint significance of the lags on the right-hand-side variables.
For a given sum coefficient, the t statistic, t, is calculated as t 4 s/r, where s 4 R ai and n 4 number of lags on the independent variable whose impact is being investigated. For
example, if n 4 3, then s 4 R ai 4 a1 ` a2 ` a3, and

2 2 2r 4 r 4 r ` r ` r ` 2r ` 2r ` 2r 1a ,!s (a1`a2`a3) a a a a a a a a 31 2 3 1 2 2 3

aSignificant at the 1% level.
bSignificant at the 5% level.
cSignificant at the 10% level.
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TABLE III

Test Results of Linear Causality Between Futures Returns and Volume (Heating Oil)

Dependent
Variable

Coefficients (t statistics)

Rt Vt Q Stat. v2 Stat.

Rt f1,1 4 0.040 (1.21) f2,1 4 10.001 (10.25) 1.899 0.06
f1,2 4 10.007 (0.19)
f1,3 4 10.010 (11.96)b

f1,4 4 0.006 (0.21)
f1,5 4 10.065 (12.18)b

f1,6 4 10.030 (11.00)
f1,7 4 0.031 (1.11)
f1,8 4 10.078 (1.81)c

f1,9 4 10.021 (10.81)
f1,10 4 0.006 (1.88)c

f1,11 4 0.090 (2.12)b

f1,12 4 0.035 (0.13)
f1,13 4 10.004(1.42)
f1,14 4 0.033 (1.12)

R f 4 0.0590 (0.5148)1,i R f 4 0.0010 (10.2461)2,i

Vt f3,1 4 10.036 (0.63) f4,1 4 0.459(16.90)a f4,19 4 0.049 (1.65)c 1.988 8.30
f3,2 4 0.038 (0.66) f4,2 4 0.000 (0.02) f4,20 4 0.059 (1.72)c

f3,3 4 10.072 (11.23) f4,3 4 0.051 (1.89)c f4,21 4 0.001 (0.02)c

f3,4 4 0.089 (1.57) f4,4 4 0.106 (3.80)a f4,22 4 0.053 (1.71)
f3,5 4 0.045 (0.84) f4,5 4 0.054 (2.13)b f4,23 4 0.015 (0.48)
f3,6 4 10.105 (11.80)c f4,6 4 10.041 (11.55) f4,24 4 10.043 (11.44)

f4,7 4 0.049 (1.70)c f4,25 4 0.032 (1.09)
f4,8 4 10.072 (12.64)a f4,26 4 10.013 (10.43)
f4,9 4 0.028 (1.03) f4,27 4 0.042 (11.36)
f4,10 4 0.079 (2.71)a f4,28 4 0.067 (2.36)b

f4,11 4 0.012 (0.48) f4,29 4 0.002 (0.07)
f4,12 4 10.005 (10.21) f4,30 4 0.037 (1.32)
f4,13 4 0.024 (0.81) f4,31 4 10.029 (11.11)
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TABLE III (Continued)

Test Results of Linear Causality Between Futures Returns and Volume (Heating Oil)

Dependent
Variable

Coefficients (t statistics)

Rt Vt Q Stat. v2 Stat.

f4,14 4 0.075 (2.58)a f4,32 4 0.030 (1.07)
f4,15 4 10.032 (11.09) f4,33 4 10.061 (12.23)b

f4,16 4 0.047 (1.66)c f4,34 4 0.082 (3.06)a

f4,17 4 10.004 (10.13) f4,35 4 10.037 (11.33)
f4,18 4 10.029 (11.06) f4,36 4 10.039 (11.52)

R f 4 0.0324 (0.2057)3,i
aR f 4 0.9687 (54.7021)4,i

The sample period is from December 3, 1984 to September 30, 1993. Rt 4 100 • ln(PRIt,T/PRIt11,T), where PRI 4 futures price and Vt 4 VOLt,T/1000, where VOL 4 futures volume.
The t statistics are reported in parentheses next to the estimated coefficients. The coefficients show the impact of a specific lag of a given right-hand variable on the left-hand-side
variable. For example, f2,1 represents the impact of volume (variable 2) on returns (variable 1) for a given lag of 1.
Q Stat. is the Q statistic for serial independence. This statistic is based on the revised Box–Ljung Q test for serial correlation among the regression residuals.
v stat. is the chi-square statistic for testing for the joint significance of the lags on the right-hand-side variables.
For a given sum coefficient, the t statistic, t, is calculated as t 4 s/rs where s 4 Ra ai and n 4 number of lags on the independent variable whose impact is being investigated.
For example, if n 4 3, then, s 4 R ai 4 a1 ` a2 ` a3, and

2 2 2r 4 r 4 r ` r ` r 1 2r ` 2r ` 2r 1a!s (a1`a2`a3) a a a a a a a a 31 2 3 1 2 2 3

aSignificant at the 1% level.
bSignificant at the 5% level.
cSignificant at the 10% level.
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TABLE IV

Test Results of Linear Causality Between Futures Returns and Volume (Unleaded Gas)

Dependent
Variable

Coefficients (t statistics)

Rt Vt Q Stat. v2 Stat.

Rt f1,1 4 0.061 (1.65)c f1,18 4 10.036 (11.57) f2,1 4 0.000 (0.01) 1.995 4.67
f1,2 4 0.048 (1.21) f1,19 4 0.036 (1.49) f2,2 4 0.015 (1.64)
f1,3 4 10.005 (11.19) f1,20 4 0.028 (1.11) f2,3 4 10.015 (12.10)b

f1,4 4 10.005 (10.19) f1,21 4 0.031 (1.10)
f1,5 4 10.013 (10.44) f1,22 4 0.023 (0.87)
f1,6 4 10.010 (10.32) f1,23 4 0.038 (1.33)
f1,7 4 0.011 (0.40) f1,24 4 0.005 (0.21)
f1,8 4 10.092 (12.22)b f1,25 4 10.036 (11.40)
f1,9 4 0.000 (0.02) f1,26 4 10.005 (10.21)
f1,10 4 0.065 (2.21)b f1.27 4 0.001 (0.02)
f1,11 4 0.027 (1.01) f1,28 4 10.006 (10.17)
f1,12 4 0.010 (0.40) f1,29 4 10.008 (10.28)
f1,13 4 0.005 (0.19) f1,30 4 10.050 (11.51)
f1,14 4 0.009(0.35) f1,31 4 0.040 (1.15)
f1,15 4 0.009 (0.34) f1,32 4 0.015 (0.58)
f1,16 4 0.009 (0.37) f1,33 4 10.038 (11.57)
f1,17 4 10.003 (10.11) f1,34 4 10.031 (11.28)

R f 4 0.0836 (0.50941,i R f 4 10.0002 (10.0618)2,i

Vt f3,1 4 0.102 (2.38)b f4,1 4 0.442(14.73)a f4,21 4 0.017 (0.51) 2.011 23.59b

f3,2 4 0.027 (0.66) f4,2 4 0.035 (0.97) f4,22 4 0.768 (2.18)b

f3,3 4 0.073 (1.79)c f4,3 4 0.030 (0.97) f4,23 4 0.006 (0.17)
f3,4 4 0.045 (1.11) f4,4 4 0.151 (5.12)a f4,24 4 10.030 (10.95)
f3,5 4 0.039 (0.94) f4,5 4 0.018 (0.58) f4,25 4 0.002 (0.05)
f3,6 4 0.048 (1.09) f4,6 4 10.013 (10.41) f4,26 4 10.019 (10.64)
f3,7 4 10.052 (11.33) f4,7 4 10.026 (10.73) f4,27 4 10.011 (10.36)
f3,8 4 0.023 (0.58) f4,8 4 0.020 (0.64) f4,28 4 0.049 (1.44)
f3,9 4 0.071 (1.67) f4,9 4 0.061 (2.07)b f4,29 4 0.040 (1.27)
f3,10 4 10.061 (11.56) f4,10 4 0.064 (2.11)b f4,30 4 10.021 (10.70)
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TABLE IV (Continued)

Test Results of Linear Causality Between Futures Returns and Volume (Unleaded Gas)

Dependent
Variable

Coefficients (t statistics)

Rt Vt Q Stat. v2 Stat.

f3,11 1 0.026 (0.66) f4,11 4 10.022 (10.79) f4,31 4 0.014 (0.45)
f3,12 4 0.077 (1.89)c f4,12 4 10.67 (12.31)b f4,32 4 10.064 (12.13)b

f4,13 4 0.006 (1.82)c f4,33 4 10.024 (10.77)
f4,14 4 0.020 (0.67) f4,34 4 0.065 (2.24)b

f4,15 4 0.024 (0.70) f4,35 4 10.056 (11.85)c

f4,16 4 0.018 (0.51) f4,36 4 10.002 (10.08)
f4,17 4 10.033 (10.95) f4,37 4 10.013 (10.46)
f4,18 4 10.026 (10.82) f4,38 4 0.009 (0.30)
f4,19 4 0.036 (1.11) f4,39 4 0.099 (3.34)a

4,20 4 0.060 (1.66)
aR f 4 0.4174 (3.044)3,i

aR f 4 0.9883 (95.2687)4,i

The sample period is from December 3, 1984 to September 30, 1993. Rt 4 100 • ln(PRIt,T/PRIt11,T), where PRI 4 futures price and Vt 4 VOLt,T/1000, where VOL 4 futures volume.
The t statistics are reported in parentheses next to the estimated coefficients. The coefficients show the impact of a specific lag of a right-hand variable on the left-hand-side
variable. For example, f2,1 represents the impact of volume (variable 2) on returns (variable 1) for a given lag of 1.
Q Stat. is the Q statistic for serial independence. This statistic is based on the revised Box–Ljung Q test for serial correlation among the regression residuals.
v stat. is the chi-square statistic for testing for the joint significance of the lags on the right-hand-side variables.
For a given sum coefficient, the t statistic, t, is calculated as t 4 s/rs, where s 4 R ai and n 4 number of lags on the independent variable whose impact is being investigated.
For example, if n 4 3, then s 4 R ai 4 a1 ` a2 ` a3, and

2 2 2r 4 r 4 r ` r ` r ` 2r ` 2r ` 2r 1a ,!s (a1`a2`a3) a a a a a a a a 31 2 3 1 2 2 3

aSignificant at the 1% level.
bSignificant at the 5% level.
cSignificant at the 10% level.
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Also, neither the summed impact of volume (Rf2,i 4 10.0010) on re-
turns nor the summed impact of returns (Rf3,i 4 0.0324) on volume is
statistically significant, indicating the lack of a long-run linear causal
relationship between heating-oil futures returns and volume.

Finally, the linear causality test results for unleaded gasoline in Table
IV reveal a unidirectional causal relationship from returns to volume. The
v2 statistic, which tests the exclusion of the returns time series from the
volume equation, is significant at the 5% level, whereas the v2 statistic in
the returns equation is insignificant. The unidirectional causal relation-
ship from returns to volume is confirmed in the long run because the
summed impact of returns (Rf3,i 4 0.4174) on volume is statistically
significant at the 1% level, whereas the summed impact of volume (Rf2,i

4 10.0002) on returns is not.
Overall, the findings in Tables II–IV imply that petroleum futures

returns series and volume series have no strong linear predictive power
for one another. These results seem to contradict the findings of Clark
(1973), Cornell (1981), Tauchen and Pitts (1983), Grammatikos and
Saunders (1986), and Bessembinder and Seguin (1993), who all report
a positive linear relationship between futures volume and price variability.
This study argues, however, that the results reported in Tables II–IV, as
well as those of earlier studies, may be spurious, because they rely on the
assumption of linear relationships between returns and volume and a
constant-variance error term.

Tests for Nonlinear Granger Causality

The estimates and tests in Tables II–IV are based on the model (1) and
(2) that presumes that any causal relationship between futures returns
and volume is linear. Therefore, this method is not able to detect certain
types of nonlinear causal relationships.6 This study conducts a prelimi-
nary nonlinearity test with the use of the method described in McLeod
and Li (1983). This test is based on the Box–Pierce Q statistic for the
squared data, and has been used in the literature to gauge the existence
of conditional heteroscedasticity.7 The residuals from the model (1) and
(2) are analyzed, and it is found that the Q statistics, given in Table V,
are highly significant, indicating that the daily returns and volume resid-

6See Brock (1991) for an illustration of how linear causality tests, such as the Granger test, may fail
to uncover nonlinear predictive power.
7See, for example, Hsieh (1989a, 1989b). Hsieh (1989a) points out that the McLeod and Li Q
statistic is related to Engle’s (1982) test for heteroscedasticity, because the former uses the autocor-
relation coefficients of the squared data, and the latter relies on the partial autocorrelation coeffi-
cients.
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TABLE V

Summary Statistics for Futures Returns and Volume Residuals

Crude Oil

fR,t lV,t

Heating Oil

fR,t lV,t

Unleaded Gas

fR,t lV,t

Skewness 11.7755a 0.8022a 11.6928a 0.9163a 11.3148a 0.5704a

Kurtosis 30.4719a 2.8119a 29.5742a 4.1760a 22.2361a 4.0162a

Minimum 134.9192 180.3958 132.3494 128.6365 127.6850 123.0494
Maximum 12.5521 123.9531 13.3602 42.4934 10.5219 30.2370
Q2(20) 136.1671 265.1627 126.6425 235.2200 177.9085 876.5951

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]
Q2(40) 264.1217 389.6911 153.4466 432.7387 250.7508 1418.4152

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]
Q2(60) 314.2478 522.5071 171.6863 592.5119 289.5217 2061.9377

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

The data are for the period, December 3, 1984 to September 30, 1993, fR,t and lV,t represent returns and volume residuals
obtained from eqs. (1) and (2), respectively. Q2(p) is the Box–Pierce Q statistic for conditional heteroscedasticity for the
squared data for lag p. Marginal significance levels are given in brackets.
aSignificant at the 1% level.

ual series exhibit conditional heteroscedasticity. Indeed, the results of
formal nonlinear dependence tests reported in Tables VIII and IX of the
Appendix reveal significant nonlinearities in the univariate futures re-
turns and volume residual time series. Given this preponderance of evi-
dence for nonlinearities in all the univariate time series examined, it
seems reasonable to conduct tests for nonlinear causality between futures
returns and trading volume.8

Baek and Brock (1992) suggest a nonparametric statistical technique
for uncovering nonlinear causal relationships that cannot be discovered
by standard linear causality tests. Consider the two time series of futures
returns ({Rt}) and volume ({Vt}). Let the m-length lead vector of Rt be
denoted by , and the Lr- length and Lv-length lag vectors of Rt and Vt

mRt

be denoted, respectively, by and . For given values of m, Lr,Lr LvR Vt1Lr t1Lv

and Lv $ 1, and for d . 0, V does not strictly Granger-cause R if
m m Lr Lr Lv LvProb(\R 1 R \ ^d| \R 1 R \ ^d, \V 1 V \ ^d)t s t1Lr s1Lr t1Lv s1Lv

m m Lr Lr4 Prob(\R 1 R \ ^d| \R 1 R \ ^d) (4)t s t1Lr s1Lr

where Prob( ) designates probability and \ \ denotes the maximum norm.

8Similar to Hsieh (1991), this study argues that nonstationarity is not likely to be an important issue
given the use of daily data. To the extent that nonstationarity can be associated largely with structural
changes, it is reasonable to assume that such changes occur infrequently. Thus, the use of high-
frequency data should minimize the effects of such nonstationary behavior such as that which oc-
curred during the market crash of 1985–1986 and the Persian Gulf crisis in 1990–1991.
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The left-hand side of eq. (4) is the conditional probability that two arbi-
trary m-length lead vectors of {Rt} are within a distance, d, of each other,
given that the corresponding Lr-length lag vectors of {Rt} and Lv-length
lag vectors of {Vt} are within a distance, d, of each other. The right-hand
side of eq. (4) is the conditional probability that two arbitrary m-length
lead vectors of {Rt} are within a distance, d, of each other, assuming that
their corresponding Lr-length lag vectors are within a distance, d, of each
other.

The strict Granger-noncausality condition in eq. (4) is reexpressed
as

CI (m ` Lr, Lv, d) CI (m ` Lr, d)1 34 (5)
CI (Lr, Lv, d) CI (Lr, d)2 4

where the CIi( )’s are the correlation-integral estimators of the joint
probabilities.9 Assuming that {Rt} and {Vt} are strictly stationary, weakly
dependent, and satisfy the mixing conditions of Denker and Keller
(1983), if {Vt} does not strictly Granger-cause {Rt}, then,

CI (m ` Lr, Lv, d, n) CI (m ` Lr, d, n)1 3n 1! 3 4CI (Lr, Lv, d, n) CI (Lr, d, n)2 4

2;N(0, r (m, Lr, Lv, d)) (6)

Hiemstra and Jones (1994) show that a consistent estimator of the vari-

ance, r2(m, Lr, Lv, d), in eq. (6) is Lr, Lv, d, n) 42 ˆ ˆr̂ (m, d(n) R(n)

d̂(n)8.
The two test statistics described in eqs. (5) and (6) are applied to the

two estimated residual series from the VAR model in eqs. (1) and (2),

and The null hypothesis is that {Vt} does not nonlinearlyˆ{f } {l̂ }.R,t V,t

strictly Granger-cause {Rt}, and eq. (6) holds for all m, Lr, and Lv $ 1
and for all d . 0. Although the evidence for linear causality is not over-
whelming, this study removes any linear predictive power with a VAR
model. Thus, any remaining incremental predictive power of one residual
series for another can be considered nonlinear predictive power [see Baek
and Brock (1992)].

Values for the lead length, m, the lag lengths, Lr and Lv, and the
scale parameter, d, must be selected to implement the Baek and Brock
test. However, in contrast to linear causality testing, no methods have
been developed for choosing optimal values for lag lengths and the scale

9See Hiemstra and Jones (1994) for the derivation of the joint probabilities and their corresponding
correlation-integral estimators.
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parameter. Therefore, this study relies on the Monte Carlo results in
Hiemstra and Jones (1993) by setting the lead length at m 4 1 and Lr
4 Lv for all cases. This study also uses common lag lengths of 1–6 lags
and a common scale parameter of e 4 1.0r, where r 4 1 denotes the
standard deviation of the standardized time series.

The empirical results of the nonlinear Granger-causality tests re-
ported in Table VI show that the minimum value attained by the stan-
dardized test statistic (NORM) is 1.900 and is significant at the 5% level.
This indicates strong evidence of nonlinear Granger-causality between
futures returns and trading volume in both directions. These results are
clearly at odds with those in Tables II–IV, where no evidence of linear
causality is reported.

Tests for Nonlinear Granger-Causality with the
Use of GARCH-Filtered Data

Although the nonlinear Granger causality is a nonparametric procedure,
additional information exists to characterize the nonlinear structure be-
tween returns and volume. In particular, Hsieh’s third-order moment test
discussed in the Appendix, suggests that the underlying nonlinear rela-
tionship is driven by the variance of the stochastic processes.10 Moreover,
the Box–Pierce Q statistics of the squared data suggest that the behavior
of the variance may be characterized by an ARCH process. Based on the
preceding evidence, this study considers whether the nonlinear Granger
causality between returns and trading volume can be attributed to vola-
tility effects associated with the flow of information. Hiemstra and Jones
(1994) point out that the test for nonlinear Granger causality may detect
spurious causality between lagged volume and current returns variance
if lagged volume captures the temporal dependence in the rate of infor-
mation flow.

This study accounts for the excess kurtosis in the returns and volume
data by estimating the generalized ARCH (GARCH) model of Bollerslev
(1986). In particular, this study employs a GARCH(1,1) model that has
been shown by various researchers [see, for example, McCurdy and Mor-
gan (1987) and Baillie and Bollerslev (1989)] to provide a parsimonious
description of the data. With the use of eq. (1), the GARCH(1,1) model
for returns can be described as11

10However, the third-order moment test has low power against the GARCH-in-mean model.
11A similar specification is used for volume, with the conditional volatility depending only on the
lagged squared residuals and lagged conditional variance.
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TABLE VI

Results of Nonlinear Granger Causality Test Between Futures Returns and Volume

Lr4Lv

H0: Futures Returns Do Not Cause Volume

1 2 3 4 5 6

H0: Volume Does Not Cause Futures Returns

1 2 3 4 5 6

Panel A: Crude Oil
DIFF 0.0073 0.0020 0.0109 0.0401 0.0493 0.0790 0.0079 0.0289 0.0503 0.0701 0.0666 0.0801
NORM 2.402b 2.059b 2.955a 1.988b 2.097b 3.277a 2.211b 4.003a 4.034a 3.989a 3.112a 2.658a

Panel B: Heating Oil
DIFF 0.0040 0.0037 0.0176 0.0071 0.0294 0.0041 0.0020 0.0062 0.0175 0.0292 0.0266 0.0060
NORM 1.900b 2.204b 2.558a 3.033a 4.156a 3.966a 2.874a 2.731a 2.304b 2.880a 3.449a 2.202b

Panel C: Unleaded Gas
DIFF 0.0070 0.0122 0.0394 0.0442 0.0452 0.0777 0.0089 0.0203 0.0121 0.0279 0.0296 0.0465
NORM 4.042a 3.323a 2.395b 2.906a 1.990b 4.003a 3.566a 2.155b 2.363b 2.239b 3.128a 3.175a

The data are for the period, December 3, 1984 to September 30, 1993. The results are based on the residual series, fR,t and lV,t, from eq. (1) and (2). Lr 4 Lv designates the
number of lags on the residuals series, fR,t and lV,t. DIFF and NORM, respectively, denote the difference between the two conditional probabilities in eq. (5) and the standardized
test statistic in eq. (6). Under the null hypothesis of nonlinear Granger noncausality, the test statistic is asymptotically distributed N(0,1). The tests employ the unconditionally
standardized series with the lead length, m, set to unity, and the length scale, d, set to 1.0.
aSignificant at the 1% level.
bSignificant at the 5% level.
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p p1 2

R 4 f R ` f V ` ft o 1,i t1i o 2,j t1j R,t
i41 j41

f |X ; t.d. (0, h , m)R,t t11 t

2h 4 a ` a f ` a h ` VR,t 0 1 R,t11 2 R,t11 t

The error term, fR,t, is assumed to follow a conditional student t density
t.d., with m degrees of freedom, and a conditional variance, hR,t. Xt11 is
the set of all relevant and available information at time t 1 1. The sum,
a1 ` a2, is a measure of the persistence of a shock to the variance. As
noted by Engle and Bollerslev (1986), if this sum equals one, an inte-
grated GARCH (IGARCH) process is said to be exhibited, implying that
shocks to the conditional variance will persist over future horizons.

The conditional variance for the returns series is estimated with cur-
rent volume as an explanatory variable, following Lamoureux and Lastra-
pes (1990), who demonstrated that contemporaneous volume is able to
explain the persistence in volatility of common stock returns. This study
finds that current volume is statistically significant, but, in contrast to
Lamoureux and Lastrapes, is unable to account for the persistence in the
conditional variance. The parameter estimates for the conditional vari-
ance specification indicate that both returns and volume exhibit a high
degree of persistence, characteristic of the IGARCH process of Engle and
Bollerslev (1986).

This study then tests for nonlinear Granger causality between re-
turns and volume with the use of the estimated VAR residuals for con-

ditionally standardized returns and volume series, namely, andˆf / h!R,t R,t

.ˆl / h!V,t V,t

The results of the nonlinear Granger-causality test applied to the
GARCH-filtered returns and volume series are reported in Table VII.
There is still strong evidence of bidirectional nonlinear Granger causality
between returns and volume, even after the data have been adjusted for
heteroscedasticity. The lone exception occurs in the case of crude oil,
where the null hypothesis of strict nonlinear Granger causality from trad-
ing volume to returns is not rejected at lag 5. Overall, these findings are
consistent with those reported in Table VI and point to the fact that
trading volume and returns have significant nonlinear predictive power
for one another over and above volatility effects. Thus, the initial conjec-
ture of this study that the underlying relationship is directed by the vol-
atility of the stochastic process appears to be rejected.
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TABLE VII

Results of GARCH-Filtered Nonlinear Granger Causality Test Between Futures Returns and Volume

Lr4Lv

H0: Futures Returns Do Not Cause Volume

1 2 3 4 5 6

H0: Volume Does Not Cause Futures Returns

1 2 3 4 5 6

Panel A: Crude Oil
DIFF 0.0069 0.0155 0.0188 0.0241 0.0299 0.0248 0.0075 0.0122 0.0160 0.0311 0.0162 0.0123
NORM 4.011a 4.966a 3.977a 3.548a 1.955b 2.026b 3.228a 3.533a 2.365b 2.789a 1.485 3.096a

Panel B: Heating Oil
DIFF 0.0035 0.0050 0.0079 0.0021 0.00159 0.0021 0.0013 0.0037 0.0088 0.0076 0.0028 0.0045
NORM 1.902b 3.445a 4.333a 3.689a 3.699a 3.298a 2.877a 3.166a 2.864a 3.005b 2.383b 1.599c

Panel C: Unleaded Gas
DIFF 0.0020 0.0012 0.0042 0.0065 0.0010 0.0043 0.0031 0.0088 0.0059 0.0032 0.0036 0.0050
NORM 4.119a 1.909b 3.533a 2.240b 3.662a 3.555a 3.007a 2.893a 2.188b 3.422a 2.305b 3.698a

The data are for the period, December 3, 1984 to September 30, 1993. The results are based on the residual series, fR,t and lV,t, from eq. (1) and (2). Lr 4 Lv designates the
number of lags on the residuals series, fR,t and lV,t. DIFF and NORM, respectively, denote the difference between the two conditional probabilities in eq. (5) and the standardized
test statistic in eq. (6). Under the null hypothesis of nonlinear Granger noncausaility, the test statistic is asymptotically distributed N(0,1). The tests employ the unconditionally
standardized series with the lead length, m, set to unity, and the length scale, d, set to 1.0.
aSignificant at the 1% level.
bSignificant at the 5% level.
cSignificant at the 10% level.
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FIGURE 1
The behavior of crude oil closing prices during the OPEC crisis (10/1/85–4/30/86).

Further Investigation

The time period covered by this study includes two major events for pe-
troleum markets. The first is the market crash of 1986. Prior to 1986,
competition among non-OPEC and OPEC members escalated. Mean-
while, Saudi Arabia had been playing the swing leader role by adjusting
its oil output to changes in the level of the demand for OPEC oil. It sought
to absorb overproduction from other OPEC member countries in an at-
tempt to stabilize total OPEC production levels and maintain the high
official price. However, because of declining market share and falling oil
revenues, Saudi Arabia increased its daily production substantially, re-
sulting in an oil glut in the world. The predictable outcome of this action
was a sharp decline of spot crude-oil prices from $31.01 per barrel on
November 25, 1985 to less than $10.50 per barrel on March 31, 1986
(see Figure 1). The second important event is the 1990–1991 Gulf War.
On August 2, 1990, Iraq invaded Kuwait and a war broke out on January
16, 1991 between Iraq and Kuwait and its allies. The war ended on Feb-
ruary 27, 1991 with the liberation of Kuwait. If Iraq had won the war, it
would have controlled a significant proportion of the worldwide oil re-
serves. As shown in Figure 2, crude-oil prices fluctuated dramatically
during the war, reaching a high of $39.54 per barrel on September 27,
1990 and a low of $17.91 per barrel on February 22, 1991. Between
January 16, 1991 and January 17, 1991, crude-oil prices tumbled almost
32%, from $30.29 to $20.63 per barrel.
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FIGURE 2
The behavior of crude oil closing prices during the Persian Gulf War (7/19/90–2/27/91).

To examine whether the empirical results of this study are contam-
inated by these two significant events, all the empirical tests are repeated
based on three subsamples: December 3, 1984 to March 31, 1986; April
1, 1986 to January 16 1991; and January 17, 1991 to September 30,
1993. The findings for the subperiods (available upon request from the
authors) are qualitatively similar to those reported for the full 1984–1993
sample period. That is, little evidence of significant linear causality be-
tween futures returns and volume is found. By contrast, significant non-
linear causal relationships are uncovered with the use of a nonparametric
test. Finally, the results of this study do not change significantly when
the periods immediately surrounding the market crash of 1986 and the
Persian Gulf War of 1990–1991 are omitted from the empirical analysis.

CONCLUSION

This article examines the relationship between returns and trading vol-
ume for three petroleum futures contracts. Using daily data on futures
prices and trading volume from the NYMEX for the December 3, 1984
to September 30, 1993 period, the study first tests for linear causality
between returns and volume. The results of this linear causality test show
that futures returns and volume have no predictive power for one another.
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However, because the distribution of the returns and volume series
provides some evidence of nonlinear dependence, the study formally tests
for and finds evidence of significant nonlinearities in the returns and
volume for the three petroleum futures contracts. The returns and vol-
ume series are then filtered for linear dependence through the use of a
VAR process. A nonparametric test statistic based on the correlation in-
tegral reveals significant bidirectional nonlinear causal relationships be-
tween the filtered returns and volume series.

Using a third-order moment test, this study finds that the nonlinear
dependence in the futures returns and volume series arises from the var-
iance, rather than the mean, of the process. Consequently, the filtered
returns and volume series are adjusted for conditional heteroscedasticity.
The study then examines the GARCH-filtered returns and volume series
and finds that, even after adjusting for volatility effects, there is still strong
evidence of bidirectional nonlinear Granger causality and concludes that
the nonlinear process may influence both the mean and variance of fu-
tures returns and volume.

Overall, the results of this study are very similar to those of Hiemstra
and Jones (1994) for Dow Jones stock returns and percentage changes
in New York Stock Exchange trading volume. They find no evidence of
linear causality but report strong significant bidirectional nonlinear cau-
sality between the two variables over the 1915–1946 and 1947–1990
periods based on a modified version of the Baek and Brock test. The
results of this study are also similar to those of Gallant, Rossi, and
Tauchen (1993) with respect to the nonlinear causality flow from returns
to trading volume. With the use of nonlinear impulse response functions
to examine the joint dynamics between daily Standard and Poor’s 500
Index stock returns and NYSE trading volume over the 1928 to 1987
period, they detect evidence of strong nonlinear causality from lagged
stock returns to current and future trading volume. However, in contrast
to the results of this study and those of Hiemstra and Jones (1994), only
weak evidence of a nonlinear impact from lagged volume to current and
future returns is uncovered with the use of their technique. Gallant,
Rossi, and Tauchen (1993) contend that their results suggest that stock
returns are nearly Granger causally prior to trading volume. However,
such an interpretation is not supported by the findings of strong bidirec-
tional nonlinear Granger causality between futures returns and trading
volume reported in this study.

It is worth noting that the results of nonlinear causality tests reported
in this study are consistent with the predictions of more than one of the
competing explanations for the presence of a causal relationship between
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asset price variability and trading volume previously discussed. For ex-
ample, causality from futures trading volume to price variability is con-
sistent with the sequential information arrival models of Copeland (1976)
and Jennings, Starks, and Fellingham (1981) and the mixture of distri-
butions model of Clark (1973) and Epps and Epps (1976). Also, a sig-
nificant causal relationship from futures price variability to trading vol-
ume is implied by the noise trading models of DeLong, Shleifer,
Summers, and Waldmann (1990).

The finding of a significant nonlinear causal relationship between
price variability and trading volume can be of interest to market regulators
as they decide on the effectiveness or the appropriateness of market re-
strictions such as daily price movement limits and position limits. For
example, increased volume in futures may lead to increased price fluc-
tuations, which in turn may prompt more regulation of futures markets.
However, the appropriateness of such regulation may hinge on the cause
of price variability. Greater regulatory restrictions may be warranted if
increased price fluctuations are caused by increased trading volume. On
the other hand, further regulation may be detrimental to the price re-
sponsiveness in futures markets if increased price variability and volume
are attributed to liquid and efficient markets.

The empirical findings of this study also have practical implications
for traders and other futures markets participants. For example, it is now
well known that successful hedging and speculative activities in futures
markets depend crucially on the ability to forecast futures price move-
ments. The finding of strong nonlinear causal relationships between pe-
troleum futures price variability and trading volume reported in this study
implies that knowledge of current trading volume improves the ability to
forecast futures prices. This improvement of short-term price predicta-
bility should lead to the construction of more accurate hedge ratios and
improvements in investment strategies.

Finally, the empirical findings of this study may be analyzed in terms
of their implications for the efficiency of petroleum futures markets. The
fact that lagged volume contains information useful for the prediction of
current price variability may imply a degree of inefficiency in petroleum
futures prices. Such inefficiency may be caused by a form of mimetic
contagion, where traders set their prices with reference to the trading
patterns of other traders. Another possible explanation for this apparent
inefficiency may be that futures traders condition their prices on previous
day’s trading volume as a measure of the market consensus. Further re-
search should be directed toward detecting the possible sources or causes
of this inefficiency.
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APPENDIX

This Appendix conducts nonlinear dependence tests beginning with
Brock, Dechert, and Scheinkman (1987), who propose a test (BDS) for
deviations from iid behavior. For a sequence of observations {x : t 4

1, . . . , T} that are iid, an m-dimensional vector, 4 (xt, xt`1, . . . ,mXt

xt`m11), can be formed. The test computes a statistic based on the cor-
relation integral defined by12

2 m mC (e, T) 4 I (X , X ) (A1)m o e t sn(n 1 1) t,s

where n 4 T 1 m ` 1 and Ie( ) is an indicator function definedm mX , Xt s

as

m m m mI (X , X ) 4 1, if \X 1 X \ , ee t s t s (A2)

4 0, otherwise

and \ \ denotes the maximum norm.
The test statistic is given by

mT[C (e, T) 1 C (e, T) ]! m 1
BDS (e, T) 4 (A3)m

r (e, T)m

Under the null hypothesis that {xt} is iid, the term, [Cm(e, T) 1 C1(e,T!
T)m], has a normal limiting distribution with mean zero and standard
deviation, rm(e, T).13 The null hypothesis of a random iid process is re-
jected if the probability of any two m histories being close together ex-
ceeds the mth power of the probability of any two points being close
together.

In general, a rejection of the null hypothesis is consistent with some
type of dependence in the returns and volume series that could be due
to a linear stochastic process, nonstationarity, a nonlinear stochastic pro-
cess, or a nonlinear deterministic system. However, following Hsieh
(1991), linear dependence can be ruled out by filtering the returns and
volume series with the use of the VAR process estimated in (1) and (2)
in the text. In addition, nonstationarity is not likely to be an important
issue given the use of daily data. To the extent that the nonstationarity

12The correlation integral measures the fraction of the pairs of points of {xt} that are within a distance
of e from each other. The value for e is chosen relative to the standard deviation divided by the spread
of the raw data.
13Brock, Hsieh, and LeBaron (1991) note that Cm(e, T) 4 C1(e, T)m does not imply an iid series.
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can be associated largely with structural changes, this study posits that it
is reasonable to assume that such changes occur infrequently. Thus, the
use of high-frequency data should minimize the effects of such nonsta-
tionary behavior. As a result, because the test analyzes the residual series
from an autoregressive process of the raw data, the rejection of the null
hypothesis can be associated with evidence of nonlinearity.

Table VIII provides the results of the BDS test applied to the residual
series from the linear filter.14 The values of the test statistics are all pos-
itive and significantly greater than zero, leading to rejection of the null
of iid behavior for the residual series. Although the BDS test reveals the
presence of nonlinearities, it does not indicate whether the stochastic
process affects the mean or variance (possibly both) of the series. Follow-
ing Hsieh (1989a), two types of nonlinearities in a series, vt, which rep-
resents the residual from the filtered raw data series, xt (Rt or Vt), may be
expressed as follows:

1. Additive dependence

m 4 f [m , . . . , m ,x , . . . , x ] ` w (A4)t t11 t1p t11 t1p t

2. Multiplicative dependence

m 4 g[m , . . . , m ,x , . . . ,x ]w (A5)t t11 t1p t11 t1p t

where wt is an iid random variable with mean zero and independent of
past vt’s and xt’s.

The functions f( ) and g( ) are some nonlinear functions of the vt’s
and xt’s or finite p. Given the above formulations, additive dependence
indicates that the nonlinearity enters through the mean of the stochastic
process. Multiplicative dependence implies that the presence of the non-
linearity is transmitted through the variance, as suggested by the auto-
regressive conditional heteroscedasticity (ARCH) process of Engle
(1982).15 Both additive and multiplicative dependence can influence the
random variable, vt, as in the case of the ARCH-in-mean (ARCH-M)
model given by:

m 4 f [m , . . . ,m ,x , . . . ,x ]t t11 t1p t11 t1p

` g[m , . . . ,m ,x , . . . ,x ]w . (A6)t11 t1p t11 t1p t

14The tests are computed using an algorithm developed by Dechert and contained in Brock et al.
(1991).
15The dependence in commodity price changes due to serially correlated variances is suggested by
Hall, Brorsen, and Irwin (1989).
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TABLE VIII

BDS Test Statistics for Futures Returns and Volume Residuals

m e/r

Crude Oil

fR,t lV,t

Heating Oil

fR,t lV,t

Unleaded Gas

fR,t lV,t

2 0.5 11.616 14.073 9.484 9.246 11.264 20.238
3 0.5 15.493 23.147 12.337 12.460 15.117 35.480
4 0.5 19.855 37.122 15.048 16.433 19.098 59.858
5 0.5 24.229 61.119 17.703 22.122 22.583 103.460
6 0.5 29.567 105.770 20.779 29.034 27.160 191.240

2 1.0 13.364 10.335 11.602 8.312 12.625 12.986
3 1.0 17.044 14.281 14.386 10.810 15.911 19.973
4 1.0 20.398 18.247 16.904 12.865 18.728 25.703
5 1.0 23.416 22.777 19.227 15.236 20.875 32.038
6 1.0 26.770 28.279 21.537 17.301 23.295 40.208

2 1.5 13.912 8.411 13.249 7.209 13.672 9.700
3 1.5 17.107 10.738 15.947 9.430 16.431 14.612
4 1.5 19.685 12.573 18.000 10.706 18.410 17.494
5 1.5 21.518 14.161 19.533 12.047 19.574 20.088
6 1.5 23.329 15.759 20.954 13.023 20.934 22.554

2 2.0 12.682 7.457 13.774 5.540 14.561 7.619
3 2.0 15.035 8.947 16.439 7.700 16.644 11.693
4 2.0 17.309 10.222 18.248 8.817 17.752 13.527
5 2.0 18.614 11.091 19.284 9.867 18.255 14.926
6 2.0 19.848 11.953 20.173 10.413 18.948 16.047

fR,t and lV,t represent returns and volume residuals obtained from eqs. (1) and (2), respectively. The data are for the period,
December 3, 1984 to September 30, 1993. The numbers in the table are the BDS test statistics, and are calculated as

mT[C (e,T) 1 C (e,T) ]! m 1

BDS (e,T) 4m
r (e,T)m

The BDS statistic has a standard normal limiting distribution. The null hypothesis of a random iid process is rejected if the
probability of any two m histories being close together exceeds the mth power of the probability of any two points being
close together, where m is the vector dimension.
The 10, 5, and 1% critical levels are 1.645, 1.960, and 2.575, respectively.

Hsieh (1989a, 1991) points out that x(t)2 will be correlated with its own
lags in both the additive and multiplicative cases, which is what the
McLeod and Li (1983) test detects. The distinguishing feature, however,
is that under additive dependence:

E[m |m , . . . ,m ,x , . . . ,x ] ? 0 (A7)t t11 t1p t11 t1p

whereas multiplicative dependence implies

E[m |m , . . . ,m ,x , . . . ,x ] 4 0 (A8)t t11 t1p t11 t1p

Hsieh provides a third-order moment test to detect the presence of ad-
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TABLE IX

Third-Order Moment Test Statistics for Futures Returns and Volume Residuals

Lag

i j

Crude Oil

fR,t lV,t

Heating Oil

fR,t lV,t

Unleaded Gas

fR,t lV,t

1 1 10.0193 10.0009 10.0269 0.0000 10.0170 0.0055
2 1 0.0344 10.0437 0.0022 10.0038 0.0225 10.0270
2 2 0.0185 10.0265 0.0200 10.0469 0.0206 10.0028
3 1 10.0264 10.0103 10.0212 0.0211 10.0295 0.0019
3 2 0.0138 0.0126 0.0069 0.0084 0.0167 10.0292
3 3 0.0019 10.0001 10.0102 10.0397 0.0100 10.0351
4 1 0.0220 0.0126 0.0514 0.0163 0.0408 0.0374
4 2 0.0017 0.0104 0.0009 10.0138 10.0002 0.0144
4 3 0.0346 10.0149 0.0250 0.0034 0.0001 10.0042
4 4 10.0024 10.0165 10.0107 10.0243 10.0163 10.0362
5 1 10.0139 0.0401 10.0063 10.0043 10.0042 10.0024
5 2 10.0209 0.0025 10.0265 0.0214 10.0120 10.0229
5 3 0.0172 10.0082 0.0435 10.0072 0.0266 0.0107
5 4 0.0181 0.0096 10.0255 10.0212 0.0074 10.0219
5 5 10.0191 10.0298 0.0023 10.0587 0.0144 10.0049

fR,t and lV,t represent returns and volume residuals obtained from eqs. (1) and (2), respectively. The data are for the period,
December 3, 1984 to September 30, 1993.
The 10, 5, and 1% critical levels are 1.645, 1.960, and 2.575, respectively.

ditive dependence, given the null hypothesis of multiplicative depen-
dence. The test statistic exploits the fact that, under multiplicative de-
pendence, vt is not correlated with terms such as vt1ivt1j, whereas additive
dependence implies that the variable, vt, is correlated with terms like
vt1ivt1j. Thus, the null hypothesis of multiplicative dependence makes
use of the fact that E[vtvt1ivt1j] 4 0, whereas the alternative hypothesis
is E[vtvt1ivt1j] ? 0, implying additive dependence. The test is designed
to reject only in the presence of additive nonlinearity, not multiplicative
nonlinearity. Thus, the third-moment procedure is able to detect a spec-
ification such as the ARCH-M.

To uncover the source of the nonlinear behavior, this study reports
the results of Hsieh’s (1989a, 1991) third-order moment test statistics in
Table IX for i,j 4 1,2,3,4,5.16 None of these third-order moment test
statistics is significantly different from zero, indicating a failure to reject
the null hypothesis of multiplicative dependence. These results suggest
that nonlinearity arises solely from the variance of the process.

16Results for i,j 4 6, 7, 8, 9, 10, not reported here but available on request, also fail to reject the
null hypothesis.
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