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I. Introduction

Asset returns have been modeled in continuous time
as diffusions by Black and Scholes (1973) and Merton
(1973), as pure jump processes by Cox and Ross
(1976), and as jump-diffusions by Merton (1976). The
jump processes studied by Cox and Ross display finite
activity, while some recent research has considered
some pure jump processes with infinite activity. Two
examples of these infinite-activity pure jump processes
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la Gestion at the Université Paris IX-Dauphine for their support of
his visit, where he completed part of the work on this project.

We investigate the impor-
tance of diffusion and
jumps in a new model
for asset returns. In con-
trast to standard models,
we allow for jump com-
ponents displaying finite
or infinite activity and
variation. Empirical in-
vestigations of time se-
ries indicate that index
dynamics are devoid of a
diffusion component,
which may be present in
the dynamics of individ-
ual stocks. This leads to
the conjecture, confirmed
on options data, that the
risk-neutral process
should be free of a diffu-
sion component. We con-
clude that the statistical
and risk-neutral processes
for equity prices are pure
jump processes of infinite
activity and finite
variation.
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are the variance gamma model studied by Madan and Seneta (1990) and
Madan, Carr, and Chang (1998) and the hyperbolic model considered in Eber-
lein, Keller, and Prause (1998). The rationale usually given for describing
asset returns as jump-diffusions is that diffusions capture frequent small
moves, while jumps capture rare large moves. Given the ability of infinite-
activity jump processes to capture both frequent small moves and rare large
moves, the question arises as to whether it is necessary to employ a diffusion
component when modeling asset returns.

To answer this question, this article develops a continuous time model that
allows for both diffusions and for jumps of both finite and infinite activity.
We define a pure jump process to be one of finite/infinite activity if the number
of price jumps in any interval of time is finite/infinite. The parameters of our
process further allow the jump component to have either finite or infinite
variation. Thus, our model synthesizes the features of the above-cited con-
tinuous-time models and captures their essential differences in parametric
special cases. The model is called the CGMY model, after the authors of this
article. We employ this model to study both the statistical process needed to
assess risk and allocate investments and the risk-neutral process used for
pricing and hedging derivatives. Our process generates a closed-form ex-
pression for the characteristic function of log prices but not for the return
density. Nonetheless, by employing our methodology on a time series of stock
returns and options data, we demonstrate how knowledge of the characteristic
function can be used to infer econometrically the fine structure of the statistical
and risk-neutral processes.

We find that index returns tend to be pure jump processes of infinite activity
and finite variation, both statistically and risk-neutrally. Thus, the index return
processes appear to have effectively diversified away any diffusion risk that
may be present in individual stock returns. We note, however, that even the
diffusion components estimated in individual equity returns appear to be sta-
tistically insignificant. In contrast, the jump components account for consis-
tently significant skewness levels that statistically may be either positive or
negative but that risk-neutrally are consistently negative. The signature profile
for the mean corrected density for asset returns appears to be a long spike
near zero, conjoined with two convex fans describing larger returns. The
departure in shape from the Gaussian is quite glaring, as the normal distribution
is always concave within one standard deviation of the mean. In contrast, the
densities of high-activity finite variation processes are consistent with the data
from both time series and option prices. We also note that, since dynamic
trading often results in profit and loss distributions similar to those generated
by our process, our research should be relevant to the literature on prescribing
capital requirements and on designing insurance contracts covering hedge fund
losses.

Thus, the contribution of our article is threefold. First, on the theoretical
side, we introduce a new stochastic process, which we use to describe asset
returns and model option values. Second, on the computational side, we dem-
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onstrate the use of Fourier inversion via the Fast Fourier transform as a
technique for determining statistical and risk-neutral densities numerically.
Finally, on the empirical side, we show that one can usually dispense with
diffusions in describing the fine structure of asset returns, so long as the jump
process used is one of infinite activity and finite variation.

From our estimates of the statistical and risk-neutral processes for each of
a set of names and indices, we also offer some preliminary conjectures on
the suggested nature of the implied measure change. A definite conclusion in
this direction must await a systematic empirical investigation that jointly es-
timates the statistical and risk-neutral processes on the same data. To model
the measure change adequately, parametric restrictions imposed by the re-
quirements of equivalence for the two measures are undesirable. Thus, it is
instructive to construct the measure change using approximating finite activity
processes that truncate the very small and very large jumps. Our findings are
informative as to the relevant theoretical directions such research may take.
In our tentative view, a critical input for constructing the measure change is
the structure of open interest in the options market. We hypothesize that large
open interest in out-of-the-money puts are a possible source of the negative
skewness observed in option-implied distributions.

We recognize that option pricing for processes with pure jump components
forces a move out of the traditional realm of arbitrage pricing into the domain
of equilibrium pricing. On the positive side, our setting allows us to use option
prices to study the measure change and the nature of the underlying equilib-
rium. Furthermore, arbitrage pricing can still be used to value more complex
claims relative to option prices, even though prices jump.

The outline of the article is as follows. In Section II, we present the details
of the synthesizing model and its parametric properties. In Section III, we
define the statistical and risk-neutral stock price model when the underlying
uncertainty is a Lévy process. Section IV provides analytical details for con-
structing the higher moments, decomposing expected total variation into its
diffusion and pure jump components, and explicitly illustrating the measure
change process. In Section V, we present the estimation methodology and the
results, and, in Section VI, we discuss the results from a variety of perspectives.
Section VII concludes.

II. The CGMY Model

Before describing our model, we describe our mechanism for inferring con-
tinuous time sample path properties from discrete observations. We recognize
that this inference is difficult and fraught with peril. After all, how is one to
infer from daily observations, whether the price process has discontinuities
and, if it does, how many? Our path to the finer structure of asset returns,
measured by the log price relative, is through the characteristic function for
the logarithm of the stock price. The Lévy Khintchine theorem uniquely
represents this characteristic function for infinitely divisible processes. Armed
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with this fundamental result and some modern computational advances in
Fourier inversion, maximum likelihood estimation of the parameters of the
statistical process from time-series data becomes feasible. Furthermore, similar
methods may be employed to estimate risk-neutral parameters from options
data, as is shown in Carr and Madan (1998). We are thus able to design a
probe of the data that enables one to learn about the fine structure of asset
returns from discrete observations, admittedly under some maintained aux-
iliary hypotheses.

The starting point of our analysis is the geometric Brownian motion model
of Black and Scholes (1973) and Merton (1973), in which the cumulative
return is modeled as the Lévy process given by arithmetic Brownian motion.
We seek to replace this process with one that enjoys all of the fundamental
properties of Brownian motion, except for pathwise continuity and scaling,
but that permits a richer array of variation in higher moment structure, es-
pecially at shorter horizons. These considerations lead us to focus on the
auxiliary hypotheses embedded in infinitely divisible processes of independent
and homogeneous increments. For reasons we will outline later, we are also
interested in processes with finite-variation jump components. For such pro-
cesses, the characteristic function is uniquely characterized by the Lévy
Khintchine theorem in terms of the drift rate a, the diffusion coefficient b,
and the Lévy density . Specifically, if is an infinitely divisible processk(x) X(t)
with a finite variation jump component and independent and homogeneous
increments, then its characteristic function is uniquely given by

�2 2u b t
iuX(t) iuxE e p exp iuat � � t (e � 1)k(x) dx .[ ] [ ]�2 ��

Heuristically, the Lévy density measures by the arrival rate of jumpsk(x) dx
of size x. The jump component of such processes is completely characterized
by this Lévy density. Our modeling focus is on candidate parametric choices
for this Lévy density, and so we begin our analysis by considering pure jump
processes.

The next subsection presents the details of the variance gamma model
developed by Madan and Seneta (1990) and extended to incorporate skewness
by Madan and Milne (1991) and Madan et al. (1998). The Madan et al. paper
shows that this model permits a parsimonious description of the volatility
smile observed in option prices at all maturities and for a wide variety of
underlying assets. The results of this study suggest that the success of the
variance gamma process in explaining the smile is likely due to the fact that
the process is a pure jump process, which displays infinite activity but finite
variation. The following subsection develops the CGMY process that gen-
eralizes the variance gamma process by adding a parameter permitting finite
or infinite activity and finite or infinite variation.
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A. The Variance Gamma Process

There are two representations for the variance gamma process, both of which
are useful, but in different contexts. In the first representation, which gave
rise to the name, the variance gamma process is interpreted as a Brownian
motion with drift, where time is changed by a gamma process. Let beW(t)
a standard Brownian motion, and let be an independent gammaG(t; 1, n)
process with mean rate unity and variance rate n. The density of the gamma
process at time t is given by

gt/n�1g exp (� )
n

f (g) p , (1)
tt/nn G( )
n

while the characteristic function is given by

t/n1
f (u, t) p E{exp [iuG(t)]} p . (2)G ( )1 � inu

The variance gamma process has three parameters, j, n, and v, and the
process is given byX (t; j, n, v)VG

X (t; j, n, v) p vG(t; n) � jW[G(t; n)]. (3)VG

The variance gamma (VG) process has a particularly simple characteristic
function:

t/n1
f (u, t) p E{exp [iuX (t)]} p . (4)VG VG ( )2 21 � ivnu � j nu /2

This characteristic function is easily obtained from (2) by conditioning on the
gamma time and using the fact that the conditioned random variable is
Gaussian.

For the second representation, the VG process is interpreted as the difference
of two independent gamma processes, since the characteristic function factors,
using the fact that

1 1 1
p ,( ) ( )2 21 � ivnu � j nu /2 1 � ih u 1 � ih up n

where , satisfyh hp n

h � h p vn,p n

2j n
h h p .p n 2

It follows that , are the roots of the equationh �hp n

2 2x � vnx � j n/2 p 0,
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whereby

2 2 2v n j n v n�h p � � ,p 4 2 2

2 2 2v n j n v n�h p � � .n 4 2 2

The two gamma processes may be denoted andG (t; m , n ) G (t; m , n ),p p p n n n

with, respectively, mean and variance rates , and , . For these gammam m n np n p n

processes, we have that , , while and2 2m p h /n m p h /n n p m n, n pp p n n p p n

. We note that the ratio of the variance rate to the square of the mean rate2m nn

is the same for both gamma processes and is equal to n. We then have that
law

X (t; j, n, v) p G (t; m , n ) � G (t; m , n ). (5)VG p p p n n n

From this representation of the VG process and classical representations
for the Lévy measures of gamma processes, Madan et al. (1998) show that
the Lévy density for the VG process is

mnexp � FxF( )2 nnmn
for x ! 0

n FxFn

k (x) p (6)VG mpexp � FxF( )2 npmp{ for x 1 0.
n FxFp

The division by the absolute value of the jump size in the VG Lévy density
(6) results in a process of infinite activity, as the VG Lévy measure integrates
to infinity. It is also clear that, since is integrable with respect to the VGFxF
Lévy density, the process is one of finite variation.

B. The CGMY Process

In this subsection, we generalize the VG Lévy density to the CGMY Lévy
density with parameters C, G, M, and Y. Specifically, the Lévy density of the
CGMY process is given byk (x)CGMY

exp (�GFxF)
C for x ! 01�YFxF

k (x) p (7)CGMY

exp (�MFxF){C , for x 1 0,1�YFxF

where and . The condition is induced by theC 1 0, G ≥ 0, M ≥ 0, Y ! 2 Y ! 2
requirement that Lévy densities integrate in the neighborhood of 0. We2x
denote by the infinitely divisible process of independentX (t; C, G, M, Y )CGMY
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increments with Lévy density given by (7). The case is the specialY p 0
case of the VG process with the parameter identification

1
C p , (8)

n

1
G p , (9)

hn

1
M p . (10)

hp

These parameters play an important role in capturing various aspects of the
stochastic process under study. The parameter C may be viewed as a measure
of the overall level of activity. Keeping the other parameters constant and
integrating over all moves exceeding a small level, we see that the aggregrate
activity level may be calibrated through movements in C. For example, if one
were to construct a model with a stochastic aggregate activity rate, then one
could model C as an independent positive process, possibly following a square
root law of its own. In the special case when , the Lévy measure isG p M
symmetric, and, in this case, Madan et al. (1998) show that the parameter C
provides control over the kurtosis of the distribution of . The caseX(t) G p

has also been studied by Koponen (1995), who gives an alternative ex-M
pression for the characteristic function.

The parameters G and M, respectively, control the rate of exponential decay
on the right and left of the Lévy density, leading to skewed distributions when
they are unequal. For the left tail of the distribution for is heavierG ! M, X(t)
than the right tail, which is consistent with the risk-neutral distribution typ-
ically implied from option prices. Thus, when G and M are implied from the
risk-neutral distribution, their difference calibrates the price of a fall relative
to a rise, while their sum measures the price of a large move relative to a
small one. In contrast, in the statistical distribution, the difference between G
and M determines the relative frequency of drops relative to rises, while their
sum measures the frequency of large moves relative to small ones. The ex-
ponential factor in the numerator of the Lévy density leads to the finiteness
of all moments for the process . As we typically construct a process atX(t)
the return level, it is reasonable to enforce finiteness of the moments at this
level.

The parameter Y was studied in Vershik and Yor (1995), and it arises in
the process for the stable law. The parameter Y is particularly useful in char-
acterizing the fine structure of the stochastic process. For example, one may
ask whether the up jumps and down jumps of the process have a completely
monotone Lévy density, and whether the process has finite or infinite activity,
or variation. We briefly describe these properties.
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Completely monotone Lévy density. A completely monotone (CM) Lévy
density structurally relates arrival rates of large jump sizes to smaller jump
sizes by requiring, among other things, that large jumps arrive less frequently
than small jumps. Completely monotone Lévy densities are essentially
mixtures of exponential functions by virtue of Bernstein’s theorem, which
shows that all such densities may be written in the form

�

�axk(x) p e z(da) (11)�
0

for some positive measure z. In the sequel, we shall be concerned with mea-
sures that are absolutely continuous with respect to Lebesgue measure and

for some positive weighting function . This restrictionz(da) p w(a) da w(a)
on Lévy densities is useful in limiting the class of pure jump models one may
entertain, and the condition is intuitively a reasonable one. For a variety of
other models along these lines, the reader is referred to Geman, Madan, and
Yor (2001).

Finite variation process. From the perspective of option pricing theory,
processes of finite variation (FV) or finite activity (FA) are potentially more
useful in explaining the measure change from the statistical to the risk-neutral
process, as they permit greater flexibility between the local characteristics of
the martingale components under the two measures. For example, for infinite
variation processes like Brownian motion, the volatility, and hence the local
martingale component, is invariant under an equivalent change of measure.
For infinite variation jump processes, like the stable laws with exponent above
unity, equivalence of the measure change implies (see Jacod and Shiryaev
1980, condition 3.25, p. 160) that the difference between the risk-neutral and
statistical Lévy densities be of finite variation, and this imposes the restriction
that the two processes have the same exponent, or, heuristically speaking, that
they be of infinite variation in the same way. Clearly, if the processes are
themselves of finite variation, then the difference in the Lévy densities will
also be of finite variation, and, hence, no parametric restriction is required on
account of this condition. These observations are important in light of the
evidence from time series and from options data that indicates that risk-neutral
volatilities are substantially higher than their statistical counterparts.

The flexibility of FA processes is even greater than that of infinite-activity,
finite-variation processes, since Jacod and Shiryaev (1980) (see condition 4.39,
c, (v), p. 246) show that parametric restrictions may also be imposed by
requiring equivalence for the latter class of processes. Equivalence essentially
requires that the Hellinger distance between the Lévy densities be finite. In
particular, one may not have one process be of finite activity while the other
is of infinite activity. Heuristically, one may say that the two processes must
be of infinite activity in the same way. For the specific case of CGMY, one
may not change C or Y under an equivalent measure change.

If, however, the data suggest that these parameters do change, it is reasonable
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TABLE 1 Process Properties and Ranges for the Parameter Y

Range of Y Values Properties of Process

Y ! �1 Not completely monotone, finite activity
�1 ! Y ! 0 Completely monotone, finite activity

0 ! Y ! 1
Completely monotone, infinite activity, finite

variation

1 ! Y ! 2
Completely monotone, infinite variation, fi-

nite quadratic variation

Note.—The parameter Y describes the behavior of the Lévy density near zero. In particular, for Y exceeding
negative unity, Y is the rate at which this density tends to infinity near the origin.

to drop down to an approximating class of FA processes and to view the Lévy
process models as truncated in a small neighborhood of zero. The required
integrability conditions are then satisfied. From such a perspective, the measure
change may always be constructed in the complement of a neighborhood of
zero. The resulting advantage from an empirical standpoint is that one may
freely calibrate all parameters to the respective statistical and risk-neutral data
and then learn the nature of the measure change made by the market on the
approximating finite activity process.

Finite activity process. Processes of FA are of interest as one may wish
to group assets by their activity levels. Thus, the use of infinite activity pro-
cesses in mathematical finance is best viewed as a first approximation designed
to study highly liquid markets with large activity. The properties described
above are all related to values for Y being in certain regions that are described
in table 1. These properties will be demonstrated formally in theorem 2.

The motivation for pursuing closed-form solutions for densities and for
option prices is frequently that the model then constitutes a tractable probe
for data, permitting real-time parameter estimation from time-series returns
and from option prices. Although we do not have closed forms for these
entities in the case of the CGMY model, we are able to exploit the fact that
the characteristic function of the process is available in closed form. Theorem
1 below displays the required characteristic function.

Theorem 1. The characteristic function for the infinitely divisible process
with independent increments and the CGYM Lévy density (7) is given by

f (u, t; C, G, M, Y )CGMY

Y Y Y Yp exp {tCG(�Y )[(M � iu) � M � (G � iu) � G ]}.

Proof. From the Lévy Khintchine theorem, we have that

�

iuxf (u, t) p exp t (e � 1)k (x) dx .[ ]CGMY � CGMY
��
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The integral in the exponent may be written as the sum of two integrals
of the form

�
exp (�bx)

iux(e � 1) p C dx� 1�Yx0

for b equal to G and M, respectively, with iu replaced by for .�iu b p G
This integration may be performed as follows:

�

�Y�1Cx {exp [�(b � iu)x] � exp (�bx)} dx�
0

�

Y �Y�1p C (b � iu) w exp (�w) dw�
0

�

Y �Y�1� C b w exp (�w) dw�
0

Y Yp CG(�Y )[(b � iu) � b ].

The result follows on substituting M and G for b and evaluating the case
at Q.E.D.b p G �iu.

Theorem 2. The CGMY process

i) has a completely monotone Lévy density for ;Y 1 �1
ii) is a process of infinite activity for ; andY 1 0
iii) is a process of infinite variation for .Y 1 1

Proof. For property i, we note that, for the quantity isY ! �1, 1 � Y
negative and the Lévy density for , M increases near�(l�Y )x exp (�bx) b p G
zero and then declines to zero as x tends to infinity. Hence, the density is
clearly not completely monotone. When we may write(1 � Y ) 1 0,

� Y1 (a � b)
�axexp (�bx) p e da,�1�Yx G(1 � Y )b

whereby we have complete monotonicity with weighting function 1 (a �1a b

.Yb) /G(1 � Y )
For property ii, we note that, for negative values of Y, the Lévy measure

integrates to a finite value in the neighborhood of zero, and so we have a
process of finite activity. When Y exceeds zero, however, the Lévy measure
integrates to infinity near zero and we have an infinite activity process.

For property iii, we note that has a finite integral near zeroFxFk (x)CGMY

for while this integral is infinite for . Q.E.D.Y ! 1, Y 1 1



Asset Returns 315

Fig. 1.—Densities of the CGMY model

III. The CGMY Stock Price Process

We model the martingale component of the logarithm of the stock price by
the CGMY process. This is a fairly robust parametric class of stochastic
processes consistent with a wide range of possible return distributions over
finite holding periods. Besides being capable of calibrating to various levels
of skewness and kurtosis, the CGMY model can also be used to study the
nature of the fine structure of the stochastic process, as reflected in the pa-
rameter Y. To appreciate the breadth of possible densities, figure 1 graphs the
density for log quarterly returns in various parameter settings. The parameters
are referred to in their VG formulation with Y as the additional parameter.
We present in curve a the base case for and aj p .25, n p .2, v p �.5,
typical setting for the S&P 500 index (henceforth SPX). We also initially set

. The other curves are double j (curve b), double n (curve c), doubleY p 0.5
v (curve d), and half Y (curve e). A variety of possible shapes and departures
from normality may be observed.

A. The Statistical Stock Price Process

The CGMY model assumes that the martingale component of the movement
in the logarithm of prices is given by the CGMY process. Hence, the stock
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price dynamics are assumed to be given by

S(t) p S(0) exp [(m � q)t � X (t; C, G, M, Y )], (12)CGYM

where m is the mean rate of return on the stock and q is a “convexity cor-
rection,” defined by

exp (�qt) p f (�i, t; C, G, M, Y ). (13)CGYM

Equations (12) and (13) define the evolution of the statistical process for
the stock price. With a view to assessing the relevance of an additional dif-
fusion component in our context, we next extend the model to include an
orthogonal diffusion component. Define the extended CGMY process as

X (t; C, G, M, Y, h) p X (t; C, G, M, Y ) � hW(t),CGMYe CGYM

where is a standard Brownian motion independent of the processW(t)
The extended stock price process has statistical dynam-X (t; C, G, M, Y ).CGMY

ics given by

2S(t) p S(0) exp [(m � q � h /2)t � X (t; C, G, M, Y, h)]. (14)CGMYe

The characteristic function for the logarithm of the stock price in this
diffusion extended CGMY model is given by

2f (u, t) p exp iu{ln [S(0)] � (m � q � h /2)t}( )ln (S)

2 2# f (u; C, G, M, Y ) exp (�h u /2). (15)CGMY

Our statistical analysis employs the characteristic function (15) for the analysis
of the time series of stock returns.

B. The Risk-Neutral Stock Price Process

We assume that the risk-neutral process for the stock lies in the robust five-
parameter class of the diffusion-extended CGMY model, with a mean risk-
neutral return given by the interest rate. The risk-neutral parameters can differ
from their statistical counterparts, and, hence, they are denoted by , , ,˜ ˜ ˜C G M

and . Letting r denote the continuously compounded interest rate, the risk-˜ ˜Y, h

neutral stock price process is

2 ˜ ˜ ˜ ˜˜ ˜ ˜S(t) p S(0) exp [(r � q � h /2)t � X (t; C, G, M, Y, h)], (16)CGMYe

with the characteristic function for the log of the stock price at time t given
by

2˜ ˜ ˜f (u, t) p exp iu{ln [S(0)] � (r � q � h /2)t}( )ln (S)

2 2˜ ˜ ˜ ˜ ˜# f (u; C, G, M, Y ) exp (�h u /2), (17)CGMY
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and defined byq̃

˜ ˜ ˜ ˜˜exp (�qt) p f (�i, t; C, G, M, Y).CGMY

The parameters , , , , and are the corresponding risk-neutral pa-˜ ˜ ˜ ˜ ˜C G M Y h

rameters estimated using data on option prices.

IV. Higher Moments, Total Variation, and Measure Changes

Once the statistical and risk-neutral processes have been estimated, we will
have estimates for the parameters C, G, M, Y, and h, and for their risk-neutral
equivalents , , , , and . Armed with these parameter estimates, we can˜ ˜ ˜ ˜ ˜C G M Y h

determine the skewness and kurtosis under both the statistical and risk-neutral
densities. We are also interested in assessing the relative magnitudes of the
jump and diffusion components. We propose to measure this relative mag-
nitude on the basis of the proportion of total quadratic variation contributed
by each component. The quadratic variation of the diffusion component is
clear, and we determine here the quadratic variation of the general CGMY
component. We are also interested in the process for the measure change and
wish to illustrate this process explicitly. For the higher moments, we develop
explicit formulas for these in terms of the parameters.

A. Higher Moments of the CGMYe Process

The higher moments of the process may be obtained on successive differ-
entiation of the characteristic function. For a general Lévy density andk(x)
diffusion coefficient h, one may show by differentiation that, for the random
variable X representing the level of a Lévy process at time 1, we have

�

2 2 2E{[X � E(X)] } p h � x k(x) dx,�
��

�

3 2 3E{[X � E(X)] } p h � x k(x) dx,�
��

�

24 2 4E{[X � E(X)] } p 3 E{[X � E(X)] } � x k(x) dx.( ) �
��
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It follows, for the CGMYe in particular, that

1 1
2Variance p h � CG(2 � Y ) � , (18)2�T 2�Y( )M G

1 1CG(3 � Y ) �3�Y 3�YM G( )
Skewness p , (19)3/2(Variance)

1 1CG(4 � Y ) �4�Y 4�YM G( )
Kurtosis p 3 � . (20)2(Variance)

B. Decomposition of Quadratic Variation

We focus attention on the statistical process, with similar calculations applying
to the risk-neutral case. The total quadratic variation over the interval (0, t)
of the diffusion component in the extended CGMY model with characteristic
function (15) is . For the jump component, the total quadratic variation is2h t
random, but its predictable quadratic variation and expectation is given by

� �
exp (�Mx) exp (�Gx)

2 2t x C dx � t x C dx� �1�Y 1�Yx x0 0

1 1
p tCG(2 � Y ) � . (21)( )2�Y 2�YM G

We shall use equation (21) in computing the decomposition of quadratic
variation reported later in our empirical results.

C. Measure Changes

The process for the Radon-Nikodym derivative of one measure with respect
to another is not very interesting or informative when the underlying filtration
is a diffusion with no jump component. On the other hand, for pure jump
processes, Jacod and Shiryaev (1980) show how the change of measure process
can be explicitly computed from the statistical and risk-neutral Lévy measures.
Specifically, we have that

�
dQ

p exp �t [Y(x) � 1]k (x) dx �Y[DX(s)], (22){ }� P( )dP S≤tt ��

where is given by the equationY(x)

k (x) p Y(x)k (x). (23)Q P

Hence, unlike the situation with diffusions, where options are redundant assets,
option prices in a jump model can be used to infer the nature of the measure
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change process, provided, as noted earlier, that one restricts attention to ap-
proximating FA processes that exclude moves in a small interval about zero,
say Consequently, one can infer the prices of jump risks conditional(�e, e).
on the size and sign of the jump. For the special case when the CGMY model
describes the statistical and risk-neutral processes, we have that

C̃ ˜Y�Y ˜x exp (�(M � M)x) x 1 e,
C

Y(x) p (24)
C̃ ˜{ Y�Y ˜FxF exp [�(G � G)FxF] x ! �e.
C

We shall comment further on the explicit form of this measure change in the
light of our parameter estimates.

V. Data and Estimation Methodology

In an ideal context, one would obtain data on the time series of stock prices
and the prices of options on the stock over a common time interval and then
jointly evaluate the likelihood of observing this data on the assumption that
the statistical and risk-neutral processes are parameterized by the extended
CGYM class with parameters C, G, M, Y, h, , , , , and , along with˜ ˜ ˜ ˜ ˜C G M Y h

the mean return m of the statistical process. We estimate the statistical param-
eters from time-series data on the asset prices over the period January 1, 1994
to December 31, 1998. For the risk-neutral process, we follow the traditional
practice established in the literature (See Bakshi, Cao, and Chen 1997) and
estimate risk-neutral parameters on a set of days from closing option prices.
We discuss the details of each of these two estimations separately in the
following two subsections.

The data for both estimations were made available by Morgan Stanley Dean
Witter and are made up of time series on 13 stock prices, with ticker symbols
AMZN, BA, GE, HWP, IBM, INTC, JNJ, MCD, MMM, MRK, MSFT, WMT,
and XON, and eight market indexes, with tickers BIX, BKX, DRG, RUT,
SPX, SOX, XAU, and XOI. For the risk-neutral estimates, we employed
closing option prices on five underlying assets, AMZN, IBM, INTC, MSFT,
and SPX, for 5 midmonth Wednesdays (October 14, 1998; November 11,
1998; December 9, 1998; January 13, 1999; and February 10, 1999), with
maturities between 1 and 2 months. The option prices are midmarket quotes
for European options obtained first by determining volatility using a finite-
difference, American option-pricing model calibrated to market American
option prices where appropriate and then determining a European option price
from this volatility estimate.
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A. The Statistical Estimation and Results

For each underlying asset, we formed the time series of daily log price relatives
and then estimated the parameters of the Lévy density C, G, M, Y, and h from
the mean-adjusted return data. Direct maximum likelihood estimation is com-
putationally expensive, as it requires a Fourier inversion for each data point
to evaluate the density, and these inversions must be nested into a gradient
search optimization algorithm for the parameter estimation.

The fast Fourier transform was used to invert the characteristic function
once for each parameter setting. This method efficiently renders the level of
the probability density at a prespecified set of values for returns. For integration
spacing of .25, the density is obtained at a return spacing of where N8p/N,
is a power of 2 used in the fast Fourier discrete transform. For N p 4,096,
the return spacing is too coarse at .00613592. We used, instead, N p

and a return spacing of .00153398.16,384
With the density evaluated at these prespecified points, we binned the return

series by counting the number of observations at each prespecified return
point, assigning data observations to the closest prespecified return point. We
then searched for parameter estimates that maximized the likelihood of this
binned data. The reported estimates are thus for this binned maximum like-
lihood estimation using the fast Fourier transform.

For the standard errors, we employ the inverse of the information matrix
when the parameter estimates are in the interior of the parameter space. In
the cases where the diffusion coefficient is estimated at the boundary of the
parameter set at the value of zero, we provide the conditional standard errors
of the other parameter estimates on inversion of the partial information matrix
with respect to the other interior parameter estimates. To test the null hy-
pothesis that the diffusion coefficient is zero, which is a test on the boundary
of the parameter space, we employ a locally mean most powerful (LMMP)
test statistic developed by King and Wu (1997). The statistic is normal with
mean zero and unit variance under the null hypothesis and is reported when
it is positive. It is based on the score function computed at the null.

The results of the estimates for 13 names and eight indices are presented
in table 2 using both parameterizations, the implied VG parameters and the
proper CGMY parameters. The estimation was conducted in the parameter-
ization j, n, v, h, and Y, with C, G, and M computed internally in accordance
with equations (8), (9), and (10). In a few cases, standard errors were not
available because of a lack of positive definiteness of the estimated information
matrix.

The estimated densities have a variety of shapes, ranging from a diffusion
component in MSFT to pure jump processes of infinite variation in the case
of the index DRG. All of the indices are consistent with processes of infinite
activity and finite variation. To appreciate further the range of possibilities,
we present graphs of five of the fitted densities along with the empirical scatter
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of the binned data on daily log returns. First, we present the characteristic
long necks of the SPX and RUT in figures 2 and 3.

We next present the bell-shaped structure in MSFT and XAU in figures 4
and 5.

Finally, we present a possible jump-diffusion case, as reflected in BA in
figure 6.

B. The Risk-Neutral Estimation and Results

For each of the five underlying assets and for each of the 5 days, we obtained
parameter estimates of the risk-neutral process by nonlinear least squares
minimization of pricing errors from out-of-the-money closing option prices.
For the computation of the model’s option price, we followed Carr and Madan
(1998) and inverted the analytical Fourier transform in log strike of the call
prices dampened by an exponential factor. The results for the risk-neutral
estimation are presented in table 3.

VI. Discussion of Results

We discuss the results from four perspectives. First, we consider the issue of
skewness and kurtosis in returns. Next, we consider partitioning the total
quadratic variation into its pure jump and diffusion components. We then
address questions related to the fine structure of the process as embedded in
the parameter Y. Finally, we close with a discussion of the nature of the
implicit measure change.

A. Skewness and Kurtosis

The evidence on statistical skewness is mixed. Of the 20 estimations, v is
significantly negative in five cases, which include SPX and RUT. Computing
the exact skewness using the moment equation (19), we find negative skewness
under the historical measure for just IBM, RUT, and SPX, respectively, at
levels �.0461, �.0047, and �.0028. In the remainder of the cases, skewness
is zero for seven cases and slightly positive for the remaining 10 cases. The
kurtosis is generally above 3, and the excess kurtosis is as large as .1758 for
WMT, while it is substantial for INTC, where it is estimated at 16.19 when
volatility is low at .02. The historical levels of volatility, skewness, and kur-
tosis, as computed by the moment equations, are reported in table 4.

In contrast, the risk-neutral process is definitely negatively skewed with M
dominating G and v negative in every case. The skewness as computed using
the moment equations is negative in every case except for AMZN on January
13, when it is slightly positive. We also note that there is considerable var-
iability in the skewness on our individual stocks across time, showing a general
decline between October 1998 and February 2000. On the SPX, however,
skewness is more stable across time.

The risk-neutral kurtosis is substantially higher than the historical levels
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TABLE 2 Results of Maximum Likelihood Estimation of the Binned Data on Continuously Compounded Daily Returns
at a Return Spacing of .001534

j n v h Y C G M LL/Z

BA .2428 .0152 .0118 .0914 �.0719 65.65 47.38 46.98 3354.93
(.1425) (.0251) (.0011) (.1927) (.3461) .7036

GE .1331 .0468 .0123 .0164 .0037 21.34 49.78 48.40 3551.80
(.1348) (.1359) (.0007) (.0929) (.5842) .1495

HWP .2239 .0389 .0160 .0981 .0931 25.72 32.36 31.72 3048.21
(.1227) (.0652) (.0014) (.1730) (.3621) 1.2088

IBM .0706 .6655 �.1243 .0201 .7836 1.50 22.18 27.12 3262.24
(1.0209) (.9959) (.0017) (.0183) (.2373) 1.7919

INTC .6879 .0020 .0194 1e � 5 �.7904 4.94 45.74 45.66 2996.86
(.6679) (.0047) (.0011) (.6356) NA

JNJ .0424 .0951 0 .0113 .7515 10.52 108.06 108.06 3527.91
(.0107) (.0614) (.0033) (.0131) (.1123) .5925

MCD .0162 12.14 5.2e � 8 7.9e � 4 1.50683 .08 25.04 25.04 3515.78
(.0034) (9.8020) (.1097) (.001) (.1449) NA

MMM .1888 .0075 .0081 9e � 6 1.0023 133.77 86.86 86.41 3595.23
(.0584) (.0066) (.0019) (.1592) NA

MRK .1168 .0689 .0135 1.8e � 6 .1172 14.50 47.11 45.13 3434.08
(.0982) (.1758) 9e � 4 (.0623) (.4745) NA

MSFT .2305 .0036 .0085 .3815 .1191 280.11 102.84 102.53 3112.5
(.0479) (.0027) NA (.3288) NA 1.8599
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WMT .1905 .0422 .0161 .0268 �.0963 23.70 36.59 35.70 3236.39
(.1891) (.1149) ( )7.8e � 4 (.1463) (.6482) .1749

XON .0709 .0255 �5.5e � 6 8.7e � 8 .4789 39.27 124.99 124.99 3664.43
(.0199) (.0202) (.0166) (.1314) NA

BIX .0189 3.1121 .0018 4.34e � 8 1.2341 .32 47.76 37.42 3710.07
(.0023) (.5491) NA .00003 NA .1014

BKX .1476 .0195 .0088 1.7e � 6 .0734 51.34 69.04 68.25 3680.18
(.0743) (.0288) (.0010) (.2599) NA

DRG .0255 .5729 �5.02e � 7 4.7e � 4 .9315 1.75 73.39 73.39 3872.48
(.0048) (.3387) (.0044) (.0995) NA

RUT .0597 .0678 �.0035 5.8e � 9 .3196 14.75 89.99 91.99 4401.39
(.0218) (.0672) ( )5.4e � 4 (.1831) NA

SOX .0271 2.2557 .00001 5.34e � 8 1.3814 .44 34.76 34.73 2731.49
(.0048) (.8011) (.0129) NA (.0591) NA

SPX .0739 .0403 �.0042 1.9e � 10 .2495 24.79 94.45 95.79 4258.5
(.0311) (.0470) ( )6.6e � 4 (.2082) NA

XAU .1909 .0080 .0074 1.66e � 7 .3071 125.05 83.04 82.64 2732.58
(.0266) (.0046) NA NA NA NA

XOI .1192 .0073 .0046 .0059 .0684 137.05 139.26 138.61 3112.54
(.0473) (.0071) (.0013) (.0814) (.1917) .0113

Note.—We report the VG parameter estimates j, n, and v, and the transform to C, G, and M, as per equations (8), (9), and (10), along with the diffusion parameter h and the fine structure
parameter Y. The final column reports the log likelihood and the LMMP Z-statistic where appropriate. Standard errors are in parentheses.
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Fig. 2.—SPX MLE density fit

Fig. 3.—RUT MLE density fit
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Fig. 4.—MSFT MLE density fit

Fig. 5.—XAU MLE density fit



326 Journal of Business

Fig. 6.—BA MLE density fit

for this statistic. On the SPX, excess kurtosis rises to 1.693 on November 11,
while the historical level is just .0339. The risk-neutral higher moments are
reported in table 5.

B. Decomposition of Quadratic Variation

A surprising feature of the results on the decomposition of quadratic variation
is that, for all of the indices, the diffusion component is absent. On the
individual stocks, the diffusion component is also absent for five companies
and is positive but insignificant in the remaining seven cases. These are BA,
GE, HWP, IBM, JNJ, MSFT, and WMT. We may employ (21) to determine
the proportion of the total quadratic variation contributed by the diffusion
component, and this is 15.32%, 1.48%, 12.60%, 0.71%, 0.23%, 62.29%, and
2.61% of the aggregate quadratic variation for BA, GE, HWP, IBM, JNJ,
MSFT, and WMT, respectively.

A collective view of these results suggests that the diffusion components
are diversifiable, while the systematic components, as reflected in the indices,
are pure jump processes. This view is consistent with a single-index model
in which the return distribution of the single factor is highly peaked near zero,
to reflect long periods of little or no movement, coupled with fat tails, to
reflect occasional movement of the whole market in one direction or the other.
These findings also suggest that the diffusion components should be small in
the risk-neutral process, as they can be costlessly diversified away.

To evaluate this conjecture, we took the parameter estimates for each stock
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TABLE 3 Results of Nonlinear Least Squares Estimation of Risk-Neutral
Parameter Values on Five Underlying Assets for 5 Days
for a Maturity of .1014

j n v h Y C G M APE

spx1014 .3052 .1004 �.9558 .0312 �.0901 9.96 7.61 28.12 .3123
spx1111 .1616 .3277 �.3043 .0292 .1432 3.05 7.57 30.88 .5459
spx1209 .1775 .1704 �.4066 .0254 �.0008 5.86 10.31 36.09 .1324
spx01133 .1420 .2377 �.3657 .0326 .2227 4.21 9.18 45.43 .5379
spx0210 .1292 .0936 �.6990 .0189 .2155 10.69 13.21 97.00 .0632
amzn1014 .9015 .2193 �1.8315 .0684 .3072 4.60 1.78 6.29 .2687
amzn1111 .1207 .0447 �4.607 2e � 5 �.0069 22.39 4.82 637.80 .4514
amzn1209 .3999 .0589 �1.8308 .0712 .6442 16.97 7.08 29.97 .3431
amzn0113 1.3423 .0572 .1727 .0021 .2013 17.48 4.50 4.31 .6378
amzn0210 1.185 .0588 �2.141 .0016 �.001 17.02 3.63 6.68 .1498
ibm1014 .4105 .1430 �.6852 .0007 .0873 6.99 5.91 14.04 .0953
ibm1111 .0312 2.386 �.0938 .0428 1.0102 .42 4.37 191.20 .0358
ibm1209 .1157 .2740 �.2702 .0496 .4464 3.65 10.68 51.06 .0425
ibm0113 .3416 .1041 �.3816 .0458 .1430 9.61 9.97 16.51 .0628
ibm0210 .4344 .1083 �.3726 .0051 .0043 9.23 8.11 12.06 .3965
intc1014 .4072 .1022 �.7057 .0179 .0719 9.78 7.41 15.93 .0238
intc1111 .3517 .0277 .7767 .0003 .0004 36.06 18.67 31.23 .0268
intc1209 .4161 .0059 �1.739 .0026 .0006 170.04 35.40 55.48 .0610
intc0113 .1452 .1536 �.1497 .0869 .5757 6.51 18.75 32.95 .0379
intc0210 .4697 .0144 �1.132 .0437 .020 69.51 20.49 30.75 .0346
msft1014 .4669 .0495 �1.2142 .0631 .0483 20.20 9.14 20.28 .0813
msft1111 .4089 .0279 �.8034 .0041 �.1341 35.78 16.43 26.04 .0609
msft1209 .2242 .9087 �.0881 .0774 .4456 1.10 5.09 8.60 .0606
msft0113 .4757 .0246 �.7350 .0058 .0011 40.62 15.98 22.48 .0823
msft0210 .4383 .0269 �.7797 7e � 5 .0003 37.16 16.03 24.14 .0630

Note.—Only out-of-the-money options were used in the estimation.We report the VG parameters j, n, and
v; the transform to C, G, M as per eqq. (8), (9), and (10); and the diffusion parameter h and fine structure
parameter Y. The final column reports the average pricing error in each case.

on 3 of the 5 days with the best fit in terms of average pricing error and
computed the proportion of the total quadratic variation attributable to the
diffusion component. We found that, in each case, the proportion of the quad-
ratic variation of the risk-neutral process due to the diffusion component was
zero. Hence, we tentatively conclude that diffusion components are not priced
in the market for risks.

C. The Fine Structure of Returns

Regarding the fine structure of statistical returns, we find that, for just three
of the individual stocks (BA, INTC, and WMT), the statistical jump component
is one of finite activity. However, the null hypothesis of a VG process cannot
be rejected for any of these cases. In all of the other cases, we have infinite
activity, and, except for BIX, SOX, and MCD, we typically estimate a finite
variation process. Thus, the jump component mainly reflects both infinite
activity and finite variation for the statistical process.

With respect to the risk-neutral process, we note that essentially all of the
processes are infinite-activity, finite-variation processes. This is reasonable in
our view, as infinite variation comes from a high degree of activity near zero
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TABLE 4 Statistical Levels of Volatility, Skewness, and Kurtosis as Computed
Using the Moment Equations (18), (19), and (20)

Volatility Skewness Kurtosis

BA .2335 .0021 3.0444
GE .1350 .0125 3.1344
HWP .2763 .0055 3.0618
IBM .2385 �.0461 3.0818
INTC .0196 .0103 16.1960
JNJ .2351 0 3.0043
MCD .2458 0 3.0194
MMM .1786 �.0001 3
MRK .1430 .0177 3.1252
MSFT .4834 .00006 3.0008
WMT .1660 .0130 3.1758
XON .2122 0 3.0055
BIX .2102 .0186 3.0180
BKX .1699 .0028 3.0415
DRG .1849 0 3.0120
RUT .1168 �.0047 3.0399
SOX .3781 .00003 3.0058
SPX .1253 �.0028 3.0339
XAU .3583 .00038 3.0052
XOI .1393 .0007 3.0151

and the pricing process is essentially pricing large moves with little attention
to the small moves. These considerations are suggestive of finite variation in
the risk-neutral process. We also observe that, in all the cases, both statistical
and risk-neutral, the Lévy density is consistent with the hypothesis of complete
monotonicity.

D. Explicit Measure Changes

For each of the four assets for which we have estimated both the risk-neutral
and statistical CGMY jump components, we use equation (24) to explicitly
construct the measure change function on an approximating finite activityY(x)
process truncating small moves. We use, for each asset, the risk-neutral pa-
rameter values for 1 of the 5 days on which the parameters were estimated.
Figure 7 presents the graph of the measure change function on the SPX for
January 13, 1999.

We observe that the function rises on both sides, with a much steeper ascent
on the left. This is indicative of risk premia for large jump sizes on both sides
of zero. The picture is quite typical and is fairly consistently observed in the
SPX market. A more symmetric U-shaped measure change is observed for
MSFT on December 9, 1998, and this is shown in figure 8.

A somewhat different shape is observed for INTC, as shown in figure 9.
This reflects significant premia for down moves but milder premium levels
for up moves.

It is interesting to enquire into the reasons for the shape of the measure
change function . In a two-person equilibrium with heterogeneous beliefsY(x)
and preferences, investors take a nonzero position in options, as shown, for
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TABLE 5 Risk Neutral Levels of Volatility, Skewness, and Kurtosis as Computed
Using the Moment Equations

Volatility Skewness Kurtosis

spx1014 .3999 �.6297 3.6540
spx1111 .2706 �.8196 4.1693
spx1209 .2453 �.7068 3.8643
spx0113 .2849 �.6263 3.6746
spx0210 .3198 �.4077 3.2699
amzn1014 1.3218 �.6204 3.7415
amzn1111 .9779 �.4258 3.2716
amzn1209 1.1042 �.1463 3.0460
amzn0113 1.5042 .0165 3.1150
amzn0210 1.2928 �.2764 3.2289
ibm1014 .5186 �.4817 3.5148
ibm1111 .3197 �.6801 3.9704
ibm1209 .3026 �.4221 3.3411
ibm0113 .4219 �.2411 3.2452
ibm0210 .4532 �.2598 3.3669
intc1014 .4958 �.3812 3.3567
intc1111 .3749 �.1655 3.1017
intc1209 .4374 �.0679 3.0207
intc0113 .3688 �.1001 3.0539
intc0210 .5044 �.0922 3.0454
msft1014 .5688 �.2770 3.1813
msft1111 .3649 �.1978 3.1555
msft1209 .3442 �.4311 3.9836
msft0113 .4900 �.1086 3.0815
msft0210 .4567 �.1341 3.0928

example, in Franke, Stapleton, and Subrahmanyam (1998) or Carr and Madan
(2001). Hence, one may infer the measure change if one has data on pref-
erences and investor positions. It is well known that the measure change is
given by the marginal utility of the position times the ratio of subjective to
objective probabilities. Specifically, one may write that as

′ xU [c(Se )]p (x)S
Y(x) p ,′U [c(S)]p (x)O

where U is the investor utility function, is the investor subjective prob-p (x)S

ability of a jump of size x in the log of the stock price, is the corre-p (x)O

sponding true statistical probability, and is the state contingent claimxc(Se )
being held by the investor. For a Lucas representative agent holding the stock
and under rational expectations, that is, , we deduce thatp (x) p p (x)S O

′ xU (Se )
Y(x) p ,′U (S)

which is a function that is monotonically decreasing in x for all concave utility
functions.

When markets are incomplete and beliefs are heterogeneous, one needs to
combine preferences, positions, and beliefs more carefully in order to infer
the nature of the function . If we take the view that option writers haveY(x)
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Fig. 7.—Measure change density for SPX, January 13, 1999

Fig. 8.—Measure change density for MSFT, December 9, 1998
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Fig. 9.—Measure change density for INTC, October 14, 1998

probability beliefs closest to the objective statistical probability, then, for
individuals satisfying , the position is that of axp (x) p p (x) c(Se ) p g(x)S O

delta-hedged option writer, with and . The shape of′ ′′g (0) p 0 g (0) ! 0 g(x)
is that of an inverted U. It follows that

′U [g(x)]
Y(x) p ′U [g(0)]

is of the form observed in our estimations. Furthermore, the relative rate of
decrease of g on the two sides of zero is likely to be influenced by the structure
of open interest in the market in put and call options. Hence, we conjecture
that the structure of open interest in the market will be an important deter-
minant of the shape of market risk premia as reflected in the measure change
function .Y(x)

VII. Conclusions

This article generalizes the VG model to allow for Lévy processes with both
a diffusion component and a Lévy measure that parametrically allows for
processes with a finite or infinite activity, and with finite or infinite variation.
The final model is termed the extended CGMY model, and we derive its
characteristic function in closed form, which allows us to describe many of
its properties.

The model is estimated on both time-series and option data, and it is ob-
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served that market indices lack a diffusion component. This leads to the
conjecture that diffusion components observed in individual stock time series
are diversified away in the index and, hence, the risk-neutral process should
be devoid of a diffusion component. Estimation on option price data tends to
provide confirmation of this conjecture.

We also report significantly greater skewness and kurtosis in the risk-neutral
process than in the statistical process. We find that risk-neutral processes are
mainly infinite-activity, finite-variation processes, while infinite variation may
be prevalent in the statistical process for indices and for some stocks.

Broadly, our results suggest that option-pricing models should be built using
completely monotone Lévy densities that integrate to infinity and are consistent
with finite variation. We explicitly construct the embedded process for the
measure change using approximating finite activity processes that exclude a
small neighborhood of zero. Our results lead us to conjecture that the measure
change process is related to the structure of open positions in the market.
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towards the Gaussian stochastic process. Physical Review E 52:1197–99.

Jacod, J., and Shiryaev, A. 1980. Limit Theorems for Stochastic Processes. Berlin: Springer-
Verlag.

Madan, D. B.; Carr, P.; and Chang, E. 1998. The variance gamma process and option pricing.
European Finance Review 2:79–105.

Madan, D. B., and Milne, F. 1991. Option pricing with VG martingale components. Mathematical
Finance 1:39–45.

Madan, D. B., and Seneta, E. 1990. The variance gamma (VG) model for share market returns.
Journal of Business 63:511–24.

Merton, R. C. 1973. Theory of rational option pricing. Bell Journal of Economics and Man-
agement Science 4:141–83.

Merton, R. C. 1976. Option pricing when underlying stock returns are discontinuous. Journal
of Financial Economics 3:125–44.

Vershik, A., and Yor, M. 1995. Multiplicativité du processus gamma et étude asymptotique des
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