
 
 
 
 
 
 

 
 
 
 
 
 

SFB 649 Discussion Paper 2005-008 
 

Stable Distributions 
 

Szymon Borak* 
Wolfgang Härdle* 

Rafal Weron** 
 

* CASE - Center for Applied Statistics and Economics, 
Humboldt-Universität zu Berlin, Germany 

**Hugo Steinhaus Center, Wroclaw University of Technology, 
Poland 

  

This research was supported by the Deutsche 
Forschungsgemeinschaft through the SFB 649 "Economic Risk". 

 
http://sfb649.wiwi.hu-berlin.de 

ISSN 1860-5664 
 

SFB 649, Humboldt-Universität zu Berlin 
Spandauer Straße 1, D-10178 Berlin 

S
FB

  
  
  
6

 4
 9

  
  
  
  

  
  
  
E

 C
 O

 N
 O

 M
 I 

C
  

  
 R

 I 
S

 K
  
  
  
  
  
  

  
  
 B

 E
 R

 L
 I 

N
 



1 Stable distributions

Szymon Borak, Wolfgang Härdle, and RafaÃl Weron
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1.2 Introduction

Many of the concepts in theoretical and empirical finance developed over the
past decades – including the classical portfolio theory, the Black-Scholes-Merton
option pricing model and the RiskMetrics variance-covariance approach to
Value at Risk (VaR) – rest upon the assumption that asset returns follow
a normal distribution. However, it has been long known that asset returns
are not normally distributed. Rather, the empirical observations exhibit fat
tails. This heavy tailed or leptokurtic character of the distribution of price
changes has been repeatedly observed in various markets and may be quan-
titatively measured by the kurtosis in excess of 3, a value obtained for the
normal distribution (Bouchaud and Potters, 2000; Carr et al., 2002; Guillaume
et al., 1997; Mantegna and Stanley, 1995; Rachev, 2003; Weron, 2004).

It is often argued that financial asset returns are the cumulative outcome of a
vast number of pieces of information and individual decisions arriving almost
continuously in time (McCulloch, 1996; Rachev and Mittnik, 2000). As such,
since the pioneering work of Louis Bachelier in 1900, they have been modeled
by the Gaussian distribution. The strongest statistical argument for it is based
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2 1 Stable distributions

on the Central Limit Theorem, which states that the sum of a large number of
independent, identically distributed variables from a finite-variance distribution
will tend to be normally distributed. However, as we have already mentioned,
financial asset returns usually have heavier tails.

In response to the empirical evidence Mandelbrot (1963) and Fama (1965) pro-
posed the stable distribution as an alternative model. Although there are other
heavy-tailed alternatives to the Gaussian law – like Student’s t, hyperbolic, nor-
mal inverse Gaussian, or truncated stable – there is at least one good reason
for modeling financial variables using stable distributions. Namely, they are
supported by the generalized Central Limit Theorem, which states that sta-
ble laws are the only possible limit distributions for properly normalized and
centered sums of independent, identically distributed random variables.

Since stable distributions can accommodate the fat tails and asymmetry, they
often give a very good fit to empirical data. In particular, they are valuable
models for data sets covering extreme events, like market crashes or natural
catastrophes. Even though they are not universal, they are a useful tool in
the hands of an analyst working in finance or insurance. Hence, we devote
this chapter to a thorough presentation of the computational aspects related
to stable laws. In Section 1.3 we review the analytical concepts and basic
characteristics. In the following two sections we discuss practical simulation and
estimation approaches. Finally, in Section 1.6 we present financial applications
of stable laws.

1.3 Definitions and basic characteristics

Stable laws – also called α-stable, stable Paretian or Lévy stable – were in-
troduced by Levy (1925) during his investigations of the behavior of sums of
independent random variables. A sum of two independent random variables
having an α-stable distribution with index α is again α-stable with the same
index α. This invariance property, however, does not hold for different α’s.

The α-stable distribution requires four parameters for complete description:
an index of stability α ∈ (0, 2] also called the tail index, tail exponent or
characteristic exponent, a skewness parameter β ∈ [−1, 1], a scale parameter
σ > 0 and a location parameter µ ∈ R. The tail exponent α determines the
rate at which the tails of the distribution taper off, see the left panel in Figure
1.1. When α = 2, the Gaussian distribution results. When α < 2, the variance
is infinite and the tails are asymptotically equivalent to a Pareto law, i.e. they
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Dependence on alpha 
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Figure 1.1: Left panel : A semilog plot of symmetric (β = µ = 0) α-stable
probability density functions (pdfs) for α = 2 (black solid line), 1.8
(red dotted line), 1.5 (blue dashed line) and 1 (green long-dashed
line). The Gaussian (α = 2) density forms a parabola and is the
only α-stable density with exponential tails. Right panel : Right
tails of symmetric α-stable cumulative distribution functions (cdfs)
for α = 2 (black solid line), 1.95 (red dotted line), 1.8 (blue dashed
line) and 1.5 (green long-dashed line) on a double logarithmic paper.
For α < 2 the tails form straight lines with slope −α.

STFstab01.xpl

exhibit a power-law behavior. More precisely, using a central limit theorem
type argument it can be shown that (Janicki and Weron, 1994; Samorodnitsky
and Taqqu, 1994):

{
limx→∞ xαP(X > x) = Cα(1 + β)σα,

limx→∞ xαP(X < −x) = Cα(1 + β)σα,
(1.1)

where:

Cα =
(

2
∫ ∞

0

x−α sin(x)dx

)−1

=
1
π

Γ(α) sin
πα

2
.

The convergence to a power-law tail varies for different α’s and, as can be seen
in the right panel of Figure 1.1, is slower for larger values of the tail index.

http://www.quantlet.de/codes//STFstab01.html�


4 1 Stable distributions

Moreover, the tails of α-stable distribution functions exhibit a crossover from
an approximate power decay with exponent α > 2 to the true tail with exponent
α. This phenomenon is more visible for large α’s (Weron, 2001).

When α > 1, the mean of the distribution exists and is equal to µ. In general,
the pth moment of a stable random variable is finite if and only if p < α. When
the skewness parameter β is positive, the distribution is skewed to the right,
i.e. the right tail is thicker, see the left panel of Figure 1.2. When it is negative,
it is skewed to the left. When β = 0, the distribution is symmetric about µ. As
α approaches 2, β loses its effect and the distribution approaches the Gaussian
distribution regardless of β. The last two parameters, σ and µ, are the usual
scale and location parameters, i.e. σ determines the width and µ the shift of
the mode (the peak) of the density. For σ = 1 and µ = 0 the distribution is
called standard stable.

1.3.1 Characteristic function representation

Due to the lack of closed form formulas for densities for all but three dis-
tributions (see the right panel in Figure 1.2), the α-stable law can be most
conveniently described by its characteristic function φ(t) – the inverse Fourier
transform of the probability density function. However, there are multiple pa-
rameterizations for α-stable laws and much confusion has been caused by these
different representations, see Figure 1.3. The variety of formulas is caused by
a combination of historical evolution and the numerous problems that have
been analyzed using specialized forms of the stable distributions. The most
popular parameterization of the characteristic function of X ∼ Sα(σ, β, µ),
i.e. an α-stable random variable with parameters α, σ, β, and µ, is given by
(Samorodnitsky and Taqqu, 1994; Weron, 2004):

ln φ(t) =





−σα|t|α{1− iβsign(t) tan πα
2 }+ iµt, α 6= 1,

−σ|t|{1 + iβsign(t) 2
π ln |t|}+ iµt, α = 1.

(1.2)

For numerical purposes, it is often advisable to use Nolan’s (1997) parameter-
ization:

ln φ0(t) =





−σα|t|α{1 + iβsign(t) tan πα
2 [(σ|t|)1−α − 1]}+ iµ0t, α 6= 1,

−σ|t|{1 + iβsign(t) 2
π ln(σ|t|)}+ iµ0t, α = 1.

(1.3)
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Figure 1.2: Left panel : Stable pdfs for α = 1.2 and β = 0 (black solid line), 0.5
(red dotted line), 0.8 (blue dashed line) and 1 (green long-dashed
line). Right panel : Closed form formulas for densities are known
only for three distributions – Gaussian (α = 2; black solid line),
Cauchy (α = 1; red dotted line) and Levy (α = 0.5, β = 1; blue
dashed line). The latter is a totally skewed distribution, i.e. its
support is R+. In general, for α < 1 and β = 1 (−1) the distribution
is totally skewed to the right (left).

STFstab02.xpl

The S0
α(σ, β, µ0) parameterization is a variant of Zolotariev’s (M)-parameteri-

zation (Zolotarev, 1986), with the characteristic function and hence the density
and the distribution function jointly continuous in all four parameters, see the
right panel in Figure 1.3. In particular, percentiles and convergence to the
power-law tail vary in a continuous way as α and β vary. The location parame-
ters of the two representations are related by µ = µ0−βσ tan πα

2 for α 6= 1 and
µ = µ0 − βσ 2

π ln σ for α = 1. Note also, that the traditional scale parameter
σG of the Gaussian distribution defined by:

fG(x) =
1√

2πσG

exp
{
− (x− µ)2

2σ2
G

}
, (1.4)

is not the same as σ in formulas (1.2) or (1.3). Namely, σG =
√

2σ.

http://www.quantlet.de/codes//STFstab02.html�


6 1 Stable distributions

S parameterization

-4 -2 0 2 4

x

0
0.

1
0.

2
0.

3
0.

4
0.

5

PD
F(

x)

S0 parameterization

-4 -2 0 2 4

x

0
0.

1
0.

2
0.

3
0.

4
0.

5

PD
F(

x)

Figure 1.3: Comparison of S and S0 parameterizations: α-stable pdfs for β =
0.5 and α = 0.5 (black solid line), 0.75 (red dotted line), 1 (blue
short-dashed line), 1.25 (green dashed line) and 1.5 (cyan long-
dashed line).

STFstab03.xpl

1.3.2 Stable density and distribution functions

The lack of closed form formulas for most stable densities and distribution
functions has negative consequences. For example, during maximum likeli-
hood estimation computationally burdensome numerical approximations have
to be used. There generally are two approaches to this problem. Either the
fast Fourier transform (FFT) has to be applied to the characteristic function
(Mittnik, Doganoglu, and Chenyao, 1999) or direct numerical integration has
to be utilized (Nolan, 1997, 1999).

For data points falling between the equally spaced FFT grid nodes an inter-
polation technique has to be used. Taking a larger number of grid points in-
creases accuracy, however, at the expense of higher computational burden. The
FFT based approach is faster for large samples, whereas the direct integration
method favors small data sets since it can be computed at any arbitrarily cho-
sen point. Mittnik, Doganoglu, and Chenyao (1999) report that for N = 213

the FFT based method is faster for samples exceeding 100 observations and

http://www.quantlet.de/codes//STFstab03.html�


1.3 Definitions and basic characteristics 7

slower for smaller data sets. Moreover, the FFT based approach is less uni-
versal – it is efficient only for large α’s and only for pdf calculations. When
computing the cdf the density must be numerically integrated. In contrast, in
the direct integration method Zolotarev’s (1986) formulas either for the density
or the distribution function are numerically integrated.

Set ζ = −β tan πα
2 . Then the density f(x;α, β) of a standard α-stable random

variable in representation S0, i.e. X ∼ S0
α(1, β, 0), can be expressed as (note,

that Zolotarev (1986, Section 2.2) used yet another parametrization):

• when α 6= 1 and x > ζ:

f(x; α, β) =
α(x− ζ)

1
α−1

π | α− 1 |
∫ π

2

−ξ

V (θ;α, β) exp
{−(x− ζ)

α
α−1 V (θ;α, β)

}
dθ,

(1.5)

• when α 6= 1 and x = ζ:

f(x; α, β) =
Γ(1 + 1

α ) cos(ξ)

π(1 + ζ2)
1
2α

,

• when α 6= 1 and x < ζ:

f(x; α, β) = f(−x;α,−β),

• when α = 1:

f(x; 1, β) =





1
2|β|e

−πx
2β

∫ π
2
−π

2
V (θ; 1, β) exp

{
−e−

πx
2β V (θ; 1, β)

}
dθ, β 6= 0,

1
π(1+x2) , β = 0,

where

ξ =

{
1
α arctan(−ζ), α 6= 1,
π
2 , α = 1,

and

V (θ; α, β) =





(cos αξ)
1

α−1

(
cos θ

sin α(ξ+θ)

) α
α−1 cos{αξ+(α−1)θ}

cos θ , α 6= 1,

2
π

(
π
2 +βθ

cos θ

)
exp

{
1
β (π

2 + βθ) tan θ
}

, α = 1, β 6= 0.
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The distribution F (x;α, β) of a standard α-stable random variable in represen-
tation S0 can be expressed as:

• when α 6= 1 and x > ζ:

F (x; α, β) = c1(α, β) +
sign(1− α)

π

∫ π
2

−ξ

exp
{−(x− ζ)

α
α−1 V (θ; α, β)

}
dθ,

where

c1(α, β) =

{
1
π

(
π
2 − ξ

)
, α < 1,

1, α > 1,

• when α 6= 1 and x = ζ:

F (x; α, β) =
1
π

(π

2
− ξ

)
,

• when α 6= 1 and x < ζ:

F (x; α, β) = 1− F (−x; α,−β),

• when α = 1:

F (x; 1, β) =





1
π

∫ π
2
−π

2
exp

{
−e−

πx
2β V (θ; 1, β)

}
dθ, β > 0,

1
2 + 1

π arctanx, β = 0,

1− F (x, 1,−β), β < 0.

Formula (1.5) requires numerical integration of the function g(·) exp{−g(·)},
where g(θ; x, α, β) = (x− ζ)

α
α−1 V (θ;α, β). The integrand is 0 at −ξ, increases

monotonically to a maximum of 1
e at point θ∗ for which g(θ∗; x, α, β) = 1,

and then decreases monotonically to 0 at π
2 (Nolan, 1997). However, in some

cases the integrand becomes very peaked and numerical algorithms can miss
the spike and underestimate the integral. To avoid this problem we need to
find the argument θ∗ of the peak numerically and compute the integral as a
sum of two integrals: one from −ξ to θ∗ and the other from θ∗ to π

2 .
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1.4 Simulation of α-stable variables

The complexity of the problem of simulating sequences of α-stable random
variables results from the fact that there are no analytic expressions for the
inverse F−1 of the cumulative distribution function. The first breakthrough
was made by Kanter (1975), who gave a direct method for simulating Sα(1, 1, 0)
random variables, for α < 1. It turned out that this method could be easily
adapted to the general case. Chambers, Mallows, and Stuck (1976) were the
first to give the formulas.

The algorithm for constructing a standard stable random variable X ∼ Sα(1, β, 0),
in representation (1.2), is the following (Weron, 1996):

• generate a random variable V uniformly distributed on (−π
2 , π

2 ) and an
independent exponential random variable W with mean 1;

• for α 6= 1 compute:

X = Sα,β · sin{α(V + Bα,β)}
{cos(V )}1/α

·
[
cos{V − α(V + Bα,β)}

W

](1−α)/α

, (1.6)

where

Bα,β =
arctan(β tan πα

2 )
α

,

Sα,β =
{

1 + β2 tan2
(πα

2

)}1/(2α)

;

• for α = 1 compute:

X =
2
π

{(π

2
+ βV

)
tan V − β ln

( π
2 W cosV
π
2 + βV

)}
. (1.7)

Given the formulas for simulation of a standard α-stable random variable, we
can easily simulate a stable random variable for all admissible values of the
parameters α, σ, β and µ using the following property: if X ∼ Sα(1, β, 0) then

Y =





σX + µ, α 6= 1,

σX + 2
π βσ ln σ + µ, α = 1,

(1.8)
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is Sα(σ, β, µ). It is interesting to note that for α = 2 (and β = 0) the Chambers-
Mallows-Stuck method reduces to the well known Box-Muller algorithm for
generating Gaussian random variables (Janicki and Weron, 1994). Although
many other approaches have been proposed in the literature, this method is
regarded as the fastest and the most accurate (Weron, 2004).

1.5 Estimation of parameters

Like simulation, the estimation of stable law parameters is in general severely
hampered by the lack of known closed-form density functions for all but a few
members of the stable family. Either the pdf has to be numerically integrated
(see the previous section) or the estimation technique has to be based on a
different characteristic of stable laws.

All presented methods work quite well assuming that the sample under con-
sideration is indeed α-stable. However, if the data comes from a different
distribution, these procedures may mislead more than the Hill and direct tail
estimation methods. Since the formal tests for assessing α-stability of a sample
are very time consuming we suggest to first apply the “visual inspection” tests
to see whether the empirical densities resemble those of α-stable laws.

1.5.1 Tail exponent estimation

The simplest and most straightforward method of estimating the tail index is
to plot the right tail of the empirical cdf on a double logarithmic paper. The
slope of the linear regression for large values of x yields the estimate of the tail
index α, through the relation α = −slope.

This method is very sensitive to the size of the sample and the choice of the
number of observations used in the regression. For example, the slope of about
−3.7 may indicate a non-α-stable power-law decay in the tails or the contrary
– an α-stable distribution with α ≈ 1.9. This is illustrated in Figure 1.4. In
the left panel a power-law fit to the tail of a sample of N = 104 standard
symmetric (β = µ = 0, σ = 1) α-stable distributed variables with α = 1.9
yields an estimate of α̂ = 3.732. However, when the sample size is increased to
N = 106 the power-law fit to the extreme tail observations yields α̂ = 1.9309,
which is fairly close to the original value of α.

The true tail behavior (1.1) is observed only for very large (also for very small,
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Figure 1.4: A double logarithmic plot of the right tail of an empirical symmetric
1.9-stable distribution function for a sample of size N = 104 (left
panel) and N = 106 (right panel). Thick red lines represent the
linear regression fit. The tail index estimate (α̂ = 3.7320) obtained
for the smaller sample is close to the initial power-law like decay of
the larger sample (α̂ = 3.7881). The far tail estimate α̂ = 1.9309 is
close to the true value of α.

STFstab04.xpl

i.e. the negative tail) observations, after a crossover from a temporary power-
like decay (which surprisingly indicates α ≈ 3.7). Moreover, the obtained
estimates still have a slight positive bias, which suggests that perhaps even
larger samples than 106 observations should be used. In Figure 1.4 we used
only the upper 0.15% of the records to estimate the true tail exponent. In
general, the choice of the observations used in the regression is subjective and
can yield large estimation errors, a fact which is often neglected in the literature.

A well known method for estimating the tail index that does not assume a
parametric form for the entire distribution function, but focuses only on the
tail behavior was proposed by Hill (1975). The Hill estimator is used to estimate
the tail index α, when the upper (or lower) tail of the distribution is of the
form: 1−F (x) = Cx−α, see Figure 1.5. Like the log-log regression method, the
Hill estimator tends to overestimate the tail exponent of the stable distribution

http://www.quantlet.de/codes//STFstab04.html�
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Figure 1.5: Plots of the Hill statistics α̂n,k vs. the maximum order statistic
k for 1.8-stable samples of size N = 104 (top panel) and N = 106

(left and right panels). Red horizontal lines represent the true value
of α. For better exposition, the right panel is a magnification of
the left panel for small k. A close estimate is obtained only for
k = 500, ..., 1300 (i.e. for k < 0.13% of sample size).
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if α is close to two and the sample size is not very large. For a review of the
extreme value theory and the Hill estimator see Härdle, Klinke, and Müller
(2000, Chapter 13) or Embrechts, Klüppelberg, and Mikosch (1997).

These examples clearly illustrate that the true tail behavior of α-stable laws
is visible only for extremely large data sets. In practice, this means that in
order to estimate α we must use high-frequency data and restrict ourselves to
the most “outlying” observations. Otherwise, inference of the tail index may
be strongly misleading and rejection of the α-stable regime unfounded.

We now turn to the problem of parameter estimation. We start the discussion
with the simplest, fastest and ... least accurate quantile methods, then develop
the slower, yet much more accurate sample characteristic function methods
and, finally, conclude with the slowest but most accurate maximum likelihood
approach. Given a sample x1, ..., xn of independent and identically distributed
Sα(σ, β, µ) observations, in what follows, we provide estimates α̂, σ̂, β̂, and µ̂
of all four stable law parameters.

1.5.2 Quantile estimation

Already in 1971 Fama and Roll provided very simple estimates for parame-
ters of symmetric (β = 0, µ = 0) stable laws when α > 1. McCulloch (1986)
generalized and improved their method. He analyzed stable law quantiles and
provided consistent estimators of all four stable parameters, with the restric-
tion α ≥ 0.6, while retaining the computational simplicity of Fama and Roll’s
method. After McCulloch define:

vα =
x0.95 − x0.05

x0.75 − x0.25
, (1.9)

which is independent of both σ and µ. In the above formula xf denotes the f -th
population quantile, so that Sα(σ, β, µ)(xf ) = f . Let v̂α be the corresponding
sample value. It is a consistent estimator of vα. Now, define:

vβ =
x0.95 + x0.05 − 2x0.50

x0.95 − x0.05
, (1.10)

and let v̂β be the corresponding sample value. vβ is also independent of both
σ and µ. As a function of α and β it is strictly increasing in β for each α. The
statistic v̂β is a consistent estimator of vβ .

Statistics vα and vβ are functions of α and β. This relationship may be inverted
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and the parameters α and β may be viewed as functions of vα and vβ :

α = ψ1(vα, vβ), β = ψ2(vα, vβ). (1.11)

Substituting vα and vβ by their sample values and applying linear interpolation
between values found in tables provided by McCulloch (1986) yields estimators
α̂ and β̂.

Scale and location parameters, σ and µ, can be estimated in a similar way.
However, due to the discontinuity of the characteristic function for α = 1 and
β 6= 0 in representation (1.2), this procedure is much more complicated. We
refer the interested reader to the original work of McCulloch (1986).

1.5.3 Characteristic function approaches

Given a sample x1, ..., xn of independent and identically distributed (i.i.d.)
random variables, define the sample characteristic function by

φ̂(t) =
1
n

n∑

j=1

eitxj . (1.12)

Since |φ̂(t)| is bounded by unity all moments of φ̂(t) are finite and, for any
fixed t, it is the sample average of i.i.d. random variables exp(itxj). Hence,
by the law of large numbers, φ̂(t) is a consistent estimator of the characteristic
function φ(t).

Press (1972) proposed a simple estimation method, called the method of mo-
ments, based on transformations of the characteristic function. The obtained
estimators are consistent since they are based upon estimators of φ(t), Im{φ(t)}
and Re{φ(t)}, which are known to be consistent. However, convergence to the
population values depends on a choice of four points at which the above func-
tions are evaluated. The optimal selection of these values is problematic and
still is an open question. The obtained estimates are of poor quality and the
method is not recommended for more than preliminary estimation.

Koutrouvelis (1980) presented a regression-type method which starts with an
initial estimate of the parameters and proceeds iteratively until some prespec-
ified convergence criterion is satisfied. Each iteration consists of two weighted
regression runs. The number of points to be used in these regressions depends
on the sample size and starting values of α. Typically no more than two or
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three iterations are needed. The speed of the convergence, however, depends
on the initial estimates and the convergence criterion.

The regression method is based on the following observations concerning the
characteristic function φ(t). First, from (1.2) we can easily derive:

ln(− ln |φ(t)|2) = ln(2σα) + α ln |t|. (1.13)

The real and imaginary parts of φ(t) are for α 6= 1 given by

<{φ(t)} = exp(−|σt|α) cos
[
µt + |σt|αβsign(t) tan

πα

2

]
,

and

={φ(t)} = exp(−|σt|α) sin
[
µt + |σt|αβsign(t) tan

πα

2

]
.

The last two equations lead, apart from considerations of principal values, to

arctan
(={φ(t)}
<{φ(t)}

)
= µt + βσα tan

πα

2
sign(t)|t|α. (1.14)

Equation (1.13) depends only on α and σ and suggests that we estimate these
parameters by regressing y = ln(− ln |φn(t)|2) on w = ln |t| in the model

yk = m + αwk + εk, k = 1, 2, ..., K, (1.15)

where tk is an appropriate set of real numbers, m = ln(2σα), and εk denotes an
error term. Koutrouvelis (1980) proposed to use tk = πk

25 , k = 1, 2, ..., K; with
K ranging between 9 and 134 for different estimates of α and sample sizes.

Once α̂ and σ̂ have been obtained and α and σ have been fixed at these values,
estimates of β and µ can be obtained using (1.14). Next, the regressions are
repeated with α̂, σ̂, β̂ and µ̂ as the initial parameters. The iterations continue
until a prespecified convergence criterion is satisfied.

Kogon and Williams (1998) eliminated this iteration procedure and simplified
the regression method. For initial estimation they applied McCulloch’s (1986)
method, worked with the continuous representation (1.3) of the characteristic
function instead of the classical one (1.2) and used a fixed set of only 10 equally
spaced frequency points tk. In terms of computational speed their method
compares favorably to the original method of Koutrouvelis (1980). It has a
significantly better performance near α = 1 and β 6= 0 due to the elimination
of discontinuity of the characteristic function. However, it returns slightly worse
results for very small α.
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1.5.4 Maximum likelihood method

The maximum likelihood (ML) estimation scheme for α-stable distributions
does not differ from that for other laws, at least as far as the theory is concerned.
For a vector of observations x = (x1, ..., xn), the ML estimate of the parameter
vector θ = (α, σ, β, µ) is obtained by maximizing the log-likelihood function:

Lθ(x) =
n∑

i=1

ln f̃(xi; θ), (1.16)

where f̃(·; θ) is the stable pdf. The tilde denotes the fact that, in general,
we do not know the explicit form of the density and have to approximate it
numerically. The ML methods proposed in the literature differ in the choice of
the approximating algorithm. However, all of them have an appealing common
feature – under certain regularity conditions the maximum likelihood estimator
is asymptotically normal.

Modern ML estimation techniques either utilize the FFT approach for approxi-
mating the stable pdf (Mittnik et al., 1999) or use the direct integration method
(Nolan, 2001). Both approaches are comparable in terms of efficiency. The dif-
ferences in performance are the result of different approximation algorithms,
see Section 1.3.2.

Simulation studies suggest that out of the five described techniques the method
of moments yields the worst estimates, well outside any admissible error range
(Stoyanov and Racheva-Iotova, 2004; Weron, 2004). McCulloch’s method comes
in next with acceptable results and computational time significantly lower than
the regression approaches. On the other hand, both the Koutrouvelis and the
Kogon-Williams implementations yield good estimators with the latter per-
forming considerably faster, but slightly less accurate. Finally, the ML esti-
mates are almost always the most accurate, in particular, with respect to the
skewness parameter. However, as we have already said, maximum likelihood
estimation techniques are certainly the slowest of all the discussed methods.
For example, ML estimation for a sample of a few thousand observations us-
ing a gradient search routine which utilizes the direct integration method is
slower by 4 orders of magnitude than the Kogon-Williams algorithm, i.e. a few
minutes compared to a few hundredths of a second on a fast PC! Clearly, the
higher accuracy does not justify the application of ML estimation in many real
life problems, especially when calculations are to be performed on-line.
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Table 1.1: Fits to 2000 Dow Jones Industrial Average (DJIA) index returns
from the period February 2, 1987 – December 29, 1994. Test statis-
tics and the corresponding p-values based on 1000 simulated samples
(in parentheses) are also given.

Parameters: α σ β µ

α-stable fit 1.6411 0.0050 -0.0126 0.0005
Gaussian fit 0.0111 0.0003

Tests: Anderson-Darling Kolmogorov
α-stable fit 0.6441 0.5583

(0.020) (0.500)

Gaussian fit +∞ 4.6353
(<0.005) (<0.005)

STFstab06.xpl

1.6 Financial applications of stable laws

Many techniques in modern finance rely heavily on the assumption that the
random variables under investigation follow a Gaussian distribution. However,
time series observed in finance – but also in other applications – often deviate
from the Gaussian model, in that their marginal distributions are heavy-tailed
and, possibly, asymmetric. In such situations, the appropriateness of the com-
monly adopted normal assumption is highly questionable.

It is often argued that financial asset returns are the cumulative outcome of
a vast number of pieces of information and individual decisions arriving al-

most continuously in time. Hence, in the presence of heavy-tails it is natural
to assume that they are approximately governed by a stable non-Gaussian dis-
tribution. Other leptokurtic distributions, including Student’s t, Weibull, and
hyperbolic, lack the attractive central limit property.

Stable distributions have been successfully fit to stock returns, excess bond
returns, foreign exchange rates, commodity price returns and real estate returns
(McCulloch, 1996; Rachev and Mittnik, 2000). In recent years, however, several
studies have found, what appears to be strong evidence against the stable model
(Gopikrishnan et al., 1999; McCulloch, 1997). These studies have estimated the

http://www.quantlet.de/codes//STFstab06.html�
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Table 1.2: Fits to 1635 Boeing stock price returns from the period July 1, 1997
– December 31, 2003. Test statistics and the corresponding p-values
based on 1000 simulated samples (in parentheses) are also given.

Parameters: α σ β µ

α-stable fit 1.7811 0.0141 0.2834 0.0009
Gaussian fit 0.0244 0.0001

Tests: Anderson-Darling Kolmogorov
α-stable fit 0.3756 0.4522

(0.18) (0.80)

Gaussian fit 9.6606 2.1361
(<0.005) (<0.005)

STFstab07.xpl

tail exponent directly from the tail observations and commonly have found α
that appears to be significantly greater than 2, well outside the stable domain.
Recall, however, that in Section 1.5.1 we have shown that estimating α only
from the tail observations may be strongly misleading and for samples of typical
size the rejection of the α-stable regime unfounded. Let us see ourselves how
well the stable law describes financial asset returns.

In this section we want to apply the discussed techniques to financial data. Due
to limited space we chose only one estimation method – the regression approach
of Koutrouvelis (1980), as it offers high accuracy at moderate computational
time. We start the empirical analysis with the most prominent example –
the Dow Jones Industrial Average (DJIA) index, see Table 1.1. The data set
covers the period February 2, 1987 – December 29, 1994 and comprises 2000
daily returns. Recall, that it includes the largest crash in Wall Street history
– the Black Monday of October 19, 1987. Clearly the 1.64-stable law offers
a much better fit to the DJIA returns than the Gaussian distribution. Its
superiority, especially in the tails of the distribution, is even better visible in
Figure 1.6.

To make our statistical analysis more sound, we also compare both fits through
Anderson-Darling and Kolmogorov test statistics (D’Agostino and Stephens,
1986). The former may be treated as a weighted Kolmogorov statistics which

http://www.quantlet.de/codes//STFstab07.html�
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Stable and Gaussian fit to DJIA returns
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Figure 1.6: Stable (cyan) and Gaussian (dashed red) fits to the DJIA returns
(black circles) empirical cdf from the period February 2, 1987 –
December 29, 1994. Right panel is a magnification of the left tail
fit on a double logarithmic scale clearly showing the superiority of
the 1.64-stable law.

STFstab06.xpl

puts more weight to the differences in the tails of the distributions. Although
no asymptotic results are known for the stable laws, approximate p-values for
these goodness-of-fit tests can be obtained via the Monte Carlo technique.
First the parameter vector is estimated for a given sample of size n, yielding
θ̂, and the test statistics is calculated assuming that the sample is distributed
according to F (x; θ̂), returning a value of d. Next, a sample of size n of F (x; θ̂)-
distributed variates is generated. The parameter vector is estimated for this
simulated sample, yielding θ̂1, and the test statistics is calculated assuming that
the sample is distributed according to F (x; θ̂1). The simulation is repeated as
many times as required to achieve a certain level of accuracy. The estimate of
the p-value is obtained as the proportion of times that the test quantity is at
least as large as d.

For the α-stable fit of the DJIA returns the values of the Anderson-Darling and
Kolmogorov statistics are 0.6441 and 0.5583, respectively. The corresponding
approximate p-values based on 1000 simulated samples are 0.02 and 0.5 allowing

http://www.quantlet.de/codes//STFstab06.html�
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Stable and Gaussian fit to Boeing returns
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Figure 1.7: Stable (cyan) and Gaussian (dashed red) fits to the Boeing stock
returns (black circles) empirical cdf from the period July 1, 1997 –
December 31, 2003. Right panel is a magnification of the left tail
fit on a double logarithmic scale clearly showing the superiority of
the 1.78-stable law.

STFstab07.xpl

us to accept the α-stable law as a model of DJIA returns. The values of the
test statistics for the Gaussian fit yield p-values of less than 0.005 forcing us to
reject the Gaussian law, see Table 1.1.

Next, we apply the same technique to 1635 daily returns of Boeing stock prices
from the period July 1, 1997 – December 31, 2003. The 1.78-stable distribution
fits the data very well, yielding small values of the Anderson-Darling (0.3756)
and Kolmogorov (0.4522) test statistics, see Figure 1.7 and Table 1.2. The
approximate p-values based, as in the previous example, on 1000 simulated
samples are 0.18 and 0.8, respectively, allowing us to accept the α-stable law as
a model of Boeing returns. On the other hand, the values of the test statistics
for the Gaussian fit yield p-values of less than 0.005 forcing us to reject the
Gaussian distribution.

The stable law seems to be tailor-cut for the DJIA index and Boeing stock
price returns. But does it fit other asset returns as well? Unfortunately, not.
Although, for most asset returns it does provide a better fit than the Gaussian

http://www.quantlet.de/codes//STFstab07.html�
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Table 1.3: Fits to 4444 JPY/USD exchange rate returns from the period De-
cember 1, 1978 – January 31, 1991. Test statistics and the corre-
sponding p-values (in parentheses) are also given.

Parameters: α σ β µ

α-stable fit 1.3274 0.0020 -0.1393 -0.0003
Gaussian fit 0.0049 -0.0001

Tests: Anderson-Darling Kolmogorov
α-stable fit 4.7833 1.4520

(<0.005) (<0.005)

Gaussian fit 91.7226 6.7574
(<0.005) (<0.005)

STFstab08.xpl

law, in many cases the test statistics and p-values suggest that the fit is not
as good as for these two data sets. This can be seen in Figure 1.8 and Table
1.3, where the calibration results for 4444 daily returns of the Japanese yen
against the US dollar (JPY/USD) exchange rate from December 1, 1978 to
January 31, 1991 are presented. The empirical distribution does not exhibit
power-law tails and the extreme tails are largely overestimated by the stable
distribution. For a risk manager who likes to play safe this may not be a bad
idea, as the stable law overestimates the risks and thus provides an upper limit
of losses. However, from a calibration perspective other distributions, like the
hyperbolic or truncated stable, may be more appropriate for many data sets
(Weron, 2004).
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Stable and Gaussian fit to JPY/USD returns
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Figure 1.8: Stable (cyan) and Gaussian (dashed red) fits to the JPY/USD ex-
change rate returns (black circles) empirical cdf from the period
December 1, 1978 – January 31, 1991. Right panel is a magnifica-
tion of the left tail fit on a double logarithmic scale. The extreme
returns are largely overestimated by the stable law.

STFstab08.xpl
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