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Abstract 

The volatility information found in high-frequency exchange rate quotations and in 
implied volatilities is compared by estimating ARCH models for DM/$ returns. Reuters 
quotations are used to calculate five-minute returns and hence hourly and daily estimates of 
realised volatility that can be included in equations for the conditional variances of hourly 
and daily returns. The ARCH results show that there is a significant amount of information 
in five-minute returns that is incremental to options information when estimating hourly 
variances. The same conclusion is obtained by an out-of-sample comparison of forecasts of 
hourly realised volatility. © 1997 Elsevier Science B.V. 
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1. Introduct ion 

The volatility of a spot exchange rate S can be defined for many price models 
by the annualised standard deviation of the change in the logarithm of S during 

some time interval. For a diffusion process defined by don S ) =  ~ d t +  ~ ( t ) d W ,  
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with qt(t)  a deterministic function of time and W(t)  a standard Wiener process, 
the deterministic volatility o-(0, T) from time 0 until time T is defined by 

1 
~2 = ~var( ln  S ( T )  - In S(0)) .  

Options traders make predictions of volatility for several values of T. These 
forecast horizons typically vary between a fortnight and a year and are defined by 
the times until expiration of the options traded. Insights into these predictions can 
be obtained by inverting an option pricing formula to produce implied volatility 
numbers for various values of T. Xu and Taylor (1994) show that these volatility 
expectations vary significantly for exchange rates, both across expiry times T and 
through time. 

Options markets are often considered to be markets for trading volatility. It then 
follows that implied volatilities are likely to be good predictors of subsequent 
observed volatility if the options market is efficient. As options traders have more 
information than the historic record of asset prices it may also be expected that 
implied volatilities are better predictors than forecasts calculated from recent 
prices using ARCH models. 

Day and Lewis (1992) investigate the information content of implied volatili- 
ties, calculated from call options on the S&P 100 index, within an ARCH 
framework. They conclude that recent stock index levels contain incremental 
volatility information beyond that revealed by options prices. Lamoureux and 
Lastrapes (1993) report a similar conclusion for individual US stocks. Xu and 
Taylor (1995), however, use daily data to conclude that exchange rates do not 
contain incremental volatility information: implied volatility predictions cannot be 
improved by mixing them with conditional variances calculated from recent 
exchange rates alone. Jorion (1995) also finds that daily currency implieds are 
good predictors. 

The superior efficiency of currency implieds relative to implieds calculated 
from spot equity indices has at least two credible explanations. First, there is the 
theoretical argument of Canina and Figlewski (1993) that efficiency will be 
enhanced when fast low-cost arbitrage trading is possible. S&P 100 index 
arbitrage, unlike forex arbitrage, is expensive because many stocks must be traded. 
Second, as Jorion (1995) observes, index option implieds can suffer from substan- 
tial measurement error because of the presence of some stale quotes in the index. 

This paper extends the study of Xu and Taylor (1995), hereafter XT, by using 
high-frequency exchange rates to extract more volatility information from the 
historical record of exchange rates. From probability theory it is known that it may 
be possible to substantially improve volatility estimates by using very frequent 
observations. Nelson (1992) shows that it is theoretically possible for volatility 
estimates to be made as accurate as required for many diffusion models by using 
ARCH estimates and sufficiently frequent price measurements. As trading is not 
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continuous and bid/ask  spreads exist, there are, of course, limits to the benefits 
obtainable from high-frequency data. 

Sections 2 and 3 review the definition of implied volatility and the low- 
frequency results of XT. Section 4 describes our estimates of Deutschemark/dol- 
lar volatility obtained from the high-frequency dataset of Olsen&Associates. 
Section 5 presents the results from estimating ARCH models when the conditional 
variance is a function of implied volatilities and /or  high-frequency volatility 
estimates. Section 6 provides further evidence about the incremental information 
content of options prices and the O & A  quotations database by evaluating the 
accuracy of volatility forecasts. Finally, Section 7 summarises our conclusions. 

2. Implied volatility 

The implied volatilities used in this paper are calculated from the prices of 
nearest-the-money options on spot currency. These options are traded at the 
Philadelphia stock exchange (PHLX). Standard option pricing formulae assume 
the spot rate follows a geometric Brownian motion process. The appropriate 
European pricing formula for the price c of a call option is then a well-known 
function of the present spot rate S, the time until expiration T, the exercise price 
X, the domestic and foreign interest rates, respectively r and q and the volatility o- 
(see for example Hull, 1995). The Philadelphia options can be exercised early and 
consequently the accurate approximate formula of Barone-Adesi and Whaley 
(1987) is used to define the price C of an American call option. This price can be 
written as 

C =  ( s + e ,  S < S * ,  
- X ,  S > S * ,  

with e the early exercise premium and S* the critical spot rate above which the 
option should be exercised immediately, The implied volatility is the number o- I 
that equates an observed market price C M with the theoretical price C: 

C ~ = C ( S , T ,  X, r , q ,  o" l). 

There will be a unique solution to this equation when C M > S - X. As OC/Oo" > 0 
when S < S * (o-), the solution can be found very quickly by an interval subdivi- 
sion algorithm. Similar methods apply to put options. A typical matrix of currency 
implied volatilities calculated for various combinations of time-to-expiry T and 
exercise price X will display term structure effects as T varies for a fixed X near 
to the present spot price. These effects have been modelled by assuming mean 
reversion in implied volatilities (Xu and Taylor, 1994). Matrices of implieds also 
display smile effects as X varies for fixed T (Taylor and Xu, 1994). 

Traders know that volatility is stochastic, nevertheless they make frequent use 
of implied estimates obtained from pricing models that assume a constant volatil- 
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ity. The implied volatility can be interpreted as a volatility forecast if we follow 
the analysis of Hull and White (1987) and make three assumptions: first that the 
price S(t) and the stochastic volatility o-(t) follow diffusion processes, second that 
volatility risk is not priced and third that spot price and volatility differentials are 
uncorrelated. The first and second assumptions are pragmatic and the third is 
consistent with the empirical estimates reported by XT. With these assumptions, 
let Vr be the average variance (1/T)f~r2(t)dt.  Also, let c(o -2) represent the 
Black-Scholes, European valuation function for a constant level of volatility, ~. 
Then Hull and White (1987) show the fair European call price is the expectation 
E[c(Vr)], which is approximately c(E[Vr]) when X is near S. Thus the theory can 
support a belief that the implied volatility for time-to-expiry T is approximately 
the square root of E[ Vr ]. Traders might obtain efficient prices if they forecast the 
average variance and then insert its square root into a pricing formula that assumes 
constant volatility. 

3. Low-frequency results 

The evidence for incremental volatility information can be assessed by making 
comparisons between the maximum likelihoods attained by different volatility 
models. An ARCH model for returns R, based upon information sets g2, will 
specify a set of conditional variances h, and hence conditional distributions 
RtIO,_ ~, from which the likelihood of observed returns can be calculated. We 
consider information sets I t, Jt and K, respectively defined by (a) all returns up 
to time t, (b) implied volatilities up to time t and (c) the union of these two sets. 
We say that an information source has incremental information if it increases the 
log-likelihood of observed returns by a statistically significant amount. 

The following maximum log-likelihoods are reported by Xu and Taylor (1995, 
Table 3) for a model defined below, for five years (1985-1989) of daily D M / $  
returns from futures contracts: 

I t 4327.31 

Jt 4349.64 

K , = I  t + J ,  4349.65 

Source J, has incremental information because its addition to I, adds 22 to the 
log-likelihood with only one extra parameter included in the ARCH model. This is 
significant at very low levels. Source I t, however, does not contain incremental 
information because its addition to Jt only adds 0.01 to the log-likelihood. Thus, 
in this low-frequency example, there is only incremental information in options 
prices. 

The models estimated in XT use daily conditional variances h, that reflect 
higher levels of volatility for Monday and holiday returns. These seasonal effects 
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are modelled by multiplicative seasonal parameters, respectively denoted by M 
and H. The quantity hi* represents the conditional variance with seasonality 
removed: it is defined by 

h, if period t ends 24 hours after period t - 1, 

h i = h , /M i f t f a l l s o n a M o n d a y a n d t - l o n a F r i d a y ,  (1) 

[ht /H if a holiday occurs between the two prices. 

A general specification for h,* that incorporates information at time t -  1 about 
daily returns R t_ ~, implied volatilities i t_ 1 and their lagged values is given by 

h; =c+aR~_l(h;_ , /h t_ , )  +bh;_ l +d i2_ , / (196+48M+8H) .  (2) 

The quantity i t I here denotes the implied volatility for the nearest-the-money 
call option, for the shortest maturity with more than nine calendar days to 
expiration. Although i,_ ~ is an expectation for a period of  at least ten days it is 
used as a proxy for the market 's expectation for the single trading period t. The 
standard deviation measure i t j is an annualised quantity. It is converted to a 
variance for a 24-hour return in the above equation by assuming there are 48 
Mondays, 8 holidays and 196 normal weekdays in a year. 

An appropriate conditional distribution for daily returns from D M / $  futures is 
the generalised error distribution (GED) that has a single shape parameter, called 
the thickness parameter v. The parameter vector for the general specification is 
then 0 = (a, b, c, d, M, H, u). All conditional means are supposed to be zero. 

The maximum likelihood for information sets I, is obtained by assuming d = 0 
followed by maximisation of the log-likelihood over the remaining parameters. 
This gives: 

h, = var( R,II~_ l), 

h t = 2 . 5  × 10 -6 +O.07R~_,(h;_l/ht_,) +0.88h~*_ 1, 

v =  1.25, M =  1.16, H =  1.50. (3) 

The estimate of  z, has a standard error less than 0.1 and therefore fat-tailed 
conditional distributions describe returns more accurately than conditional normal 
distributions (v  = 2), as has been shown in many other studies of daily exchange 
rates. The estimates of  M and H are more than one but their standard errors, 
respectively 0.12 and 0.33, are substantial. 

The maximum likelihood for options information ,It is obtained when a and b 
are constrained to be zero and all the other parameters are unconstrained. MLE 
then gives c = 0 and: 

h,=var(Rt[Jt l), h; =0 .97 i2-1 / (196+48M+8H) ,  u = 1 . 3 3 .  

(4) 



322 S.J. Taylor, X. Xu / Journal of Empirical Finance 4 (1997) 317-340 

The incremental importance of previous returns and options information is 
assessed by estimating the general specification without parameter constraints. The 
MLE estimates of a and c are zero, with b estimated as 0.04 (t-ratio 1.43) and d 
as 0.93 (t-ratio 3.11). Any conventional statistical tests accept the null hypotheses 
a = 0, b = 0, c = 0 and d = 1. They also reject d ~-0 at very low significance 
levels. 

XT conclude that all the relevant information for defining the next period's 
conditional variance is contained in the most recent implied volatility. This 
conclusion holds despite using a volatility expectation for at least a ten-day period 
as a proxy for the options market's expectation for the next trading period. XT 
also present results for volatility expectations for the next day calculated from a 
term structure model for implieds studied in Xu and Taylor (1994). These 
expectations are extrapolations (T = 1 day) from several implieds ( T >  10 days). 
Such extrapolations provide both the same conclusions as short-maturity implieds 
and very similar maximum levels of the log-likelihood function. However, these 
extrapolations are biased. 

Out-of-sample forecasts of realised volatility during four-week periods in 1990 
and 1991 confirm the superiority of the options predictions compared with 
standard ARCH predictions based upon previous returns alone. 

4. Volatility estimates and expectations 

4.1. Intra-day data 

Estimates of Deutschemark/dollar volatility have been obtained from the 
dataset of spot D M / $  quotations collected and distributed by Olsen&Associates. 
The dataset contains more than 1,400,000 quotations on the interbank Reuters 
network between Thursday 1 October 1992 and Thursday 30 September 1993 
inclusive. It is our understanding that the dataset is an almost complete record of 
spot D M / $  quotations shown on Reuters FXFX page. The quotations are time 
stamped using GMT. We converted all times to US eastern time which required 
different clock adjustments for winter and summer. 

Volatility estimates have been calculated for 24-hour weekday periods for 
comparison with daily observations of implied volatilities. The options market at 
the Philadelphia stock exchange closes at 14.30 US eastern time, which is 19.30 
GMT in the winter and 18.30 GMT in the summer. A 24-hour estimate for a 
winter Tuesday is calculated from quotations made between 19.30 GMT on 
Monday until 19.30 GMT on Tuesday. We follow Andersen and Bollerslev (1997) 
and ignore the 48 hours from 21.00 GMT on Friday until 21.00 GMT on Sunday, 
because less than 0.1% of the quotations are made in this weekend period. Thus a 
24-hour estimate for a winter Monday uses quotations from 19.30 to 21.00 GMT 
on the previous Friday and from 21.00 GMT on Sunday until 19.30 GMT on 
Monday. 
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4.2. Definition and motivation of the estimates 

The realised volatility for day t is calculated from intra-day returns Rt, i with i 
counting short periods during day t, in the following way: 

= (5) 

Here m is a multiplicative constant that converts the variance for one trading day 
into an annual variance and v t is an annualised measure of  realised volatility. The 
number of  short periods in one trading day is chosen to be n = 288 corresponding 
to five-minute returns. 

We follow the methods of Andersen and Bollerslev (1997), hereafter AB, when 
five-minute returns are calculated. Their methods use averages of  bid and ask 
quotations to define rates. They define the rate at any required time by a linear 
interpolation formula that uses two quotations that immediately precede and 
follow the required time. As in AB, suspect quotations are filtered out using the 
methods of Dacorogna et al. (1993). AB note that there is very little autocorrela- 
tion in the five-minute returns: the first-lag coefficient is - 0 . 0 4 .  Negative 
dependence has previously been documented by Goodhart and Figliuoli (1991). 

Some motivation for the above method of volatility estimation is provided by 
supposing that spot exchange rates S( r )  develop in calendar time ~- according to a 
diffusion process described by 

d(ln S ( r ) )  = / x  d r +  s ( r )  cr ( r ) d W ( r )  (6) 

with ~r(r)  an annualised stochastic quantity and s ( r )  a deterministic quantity that 
reflects the strong intra-day seasonal pattern in volatility. This pattern has been 
investigated in detail by AB and has been described in earlier studies that include 
Bollerslev and Domowitz (1993) and Dacorogna et al. (1993). The square of  the 
seasonal multiplier s ( r )  averages one over a complete seasonal cycle, so if r I and 
r 2 denote the identical position in the cycle then s ( r  l) = s(r 2) and f~2 s20-)dr  = 

T 2 - -  T I .  

When the volatility is constant during a one-day cycle, of  length A years, and 
the multipliers are constants s i during intra-day intervals, then 

1 n 

E v a r ( R t , i l o ' ( ~ ' ) )  = A -  E sieo'Z(r) = A o ' 2 ( r ) ,  (7) 
i = l  n i = l  

with r the calendar time associated with trading period t. The quantity c,, 2 is the 
estimate of  ~r2(r) obtained by setting m = 1/A and using RtZi to estimate the 
above conditional variance of Rt, i. We set m = 260 which is appropriate when it 
can be assumed that there is no volatility during the weekend and a year contains 
exactly 52 weeks. 
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Fig. l. Volatility estimates from intra-day quotations. 

The estimate L,, will not be the optimal estimate of o-(~-) when volatility is 
constant within cycles. However, the estimate is consistent (v, ~ o-(~-) as n --* ~c) 
and it does not require estimation of intra-day seasonal volatility terms. 

4.3. The estimates from intra-day quotations 

Fig. 1 is a time-series plot of the volatility estimates c, for the 253 days that the 
PHLX was open between 1 October 1992 and 30 September 1993 inclusive. The 
average of these estimates is 12.5% and their standard deviation is 3.6%. Further 
descriptive statistics are presented in Table 1. The estimates have also been 
calculated for US holidays and are smaller numbers as should be expected. The 
two extreme holiday estimates are 2.5% on Christmas Day and 1.9% on New 
Year's Day; the other six holiday estimates range from 6.7 to 10.5%. 

The estimates are higher in October 1992 than in any other month, with the two 
highest estimates, 32 and 26%, respectively, calculated for Friday 2rid and 
Monday 5th October. The October average is 19.3% compared with 14.4% for 
November and 11.7% for the other ten months. The difference may be associated 
with events that followed the departure of Sterling from the EMS in September 
1992. 

The estimates display a clear day-of-the-week effect. The average estimate 
increases monotonically as the week progresses, from 11.4% on Monday to 14.1% 
on Friday. This pattern reflects the predominance of important scheduled macroe- 
conomic announcements on Fridays and less important announcements on Thurs- 
days. Parametric (ANOVA) and non-parametric (Kruskal-Wallis) tests have p- 
values below 0.2% for tests of the null hypothesis that the distribution of the 
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Table 1 
Summary statistics for volatility estimates v calculated from intra-day price quotations and implied 
volatilities i calculated from options prices 

Intra-day estimates v Implied volatilities i 

Oct./Sept. Dec./Sept. Oct./Sept. Dec./Sept. 

Sample size 253 211 253 211 
Mean 12.53 11.66 13.57 12.64 
Standard deviation 3.57 2.61 2.68 1.27 

Minimum 5.83 5.83 9.71 9.71 
Lower quartile 10.30 9.76 11.92 11.81 
Median 11.86 11.26 12.82 12.45 
Upper quartile 13.90 12.81 13.90 13.36 
Maximum 32.05 20.32 24.24 16.69 

Monday mean 11.43 10.42 13.74 12.67 
Tuesday mean 11.96 11.19 13.68 12.72 
Wednesday mean 12.03 11.31 13.53 12.73 
Thursday mean 13.14 12.26 13.53 12.66 
Friday mean 14.12 13.09 13.36 12.42 
p-value, ANOVA 0.001 0.000 0.966 0.816 

Autocorrelation 
Lag 1 0.628 0.386 0.914 0.800 
Lag 2 0.444 0.042 0.863 0.699 
Lag 3 0.392 0.077 0.821 0.632 
Lag 4 0.382 0.038 0.777 0.603 
Lag 5 0.382 0.120 0.734 0.565 

Partial autocorrelation 
Lag 2 0.083 0.184 0.169 0.165 
Lag 3 0.140 0.150 0.067 0.094 
Lag 4 0.123 0.119 0.001 0.127 
Lag 5 0.109 0.172 -0.017 0.037 

Summary statistics are calculated for the 12 months from October 1992 to September 1993 and for the 
10 months commencing December 1992. 

e s t ima tes  is ident ica l  for  the  f ive  days  of  the  week.  R e m o v i n g  the  h igh  vola t i l i ty  

m o n t h s  o f  O c t o b e r  and  N o v e m b e r  r educes  the m e a n  es t imate  by  abou t  1.0% for  

each  day  but  the  m o n o t o n i c  pa t te rn  and  the low p -va lues  remain .  

The  au tocor re la t ions  and  part ia l  au tocor re la t ions  o f  the vola t i l i ty  e s t ima tes  are 

s imi la r  to those  expec t ed  f rom an  A R ( 1 )  process .  The  f i rs t - lag au tocor re la t ion  is 

0.63 for  all the  es t imates  bu t  it falls to 0 .39 w h e n  Oc tobe r  and  N o v e m b e r  are 

exc luded .  

4.4. Implied volatilities 

Fig. 2 is a t ime-se r ies  p lo t  o f  imp l i ed  vola t i l i ty  es t imates  i, for  the  same  days  

as are used  to p roduce  Fig. 1. Each  es t ima te  is the  ave rage  o f  two imp l i ed  
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Fig. 2. Implied volatilities. 

volatilities, one calculated from a nearest-the-money (NTM) call option price and 
the other from a NTM put option price. The last options prices before the PHLX 
close at 14.30 local time are used. These are the only useful options prices 
supplied to us by the PHLX: high and low options prices are supplied but they do 
not usually define high and low implied volatilities. The spot prices used for the 
calculations of the implieds are contemporaneous quotations supplied by the 
PHLX. 

On each day, the shortest maturity options with more than nine calendar days to 
expiration are selected. The time to maturity of the options is always between 10 
and 45 calendar days. We only use the estimates i t to represent options informa- 
tion about volatility expectations. We do not seek shorter-term expectations from 
the term structure of implieds because this involves extrapolations that produced 
no statistical benefits in Xu and Taylor (1995). 

The average of the estimates i t is 13.6%, which is slightly more than the 
average of the intra-day estimates. Table 1 provides information for comparisons 
of the distributions of the implied and intra-day estimates. Fig. 2 shows that 
traders expected a higher level of volatility in October and November and 
thereafter had expectations that were within an unusually narrow band. There are 
no day-of-the-week effects because the implieds are expectations for long periods 
that average 25 calendar days. The implied estimates i, are markedly less variable 
than the realised estimates v t again because the implieds are a medium-term 
expectations measure. This also explains why the serial correlation in the implied 
volatilities is substantial: 0.91 at a lag of one-day, using all the data and 0.80 when 
the first two months are excluded. 
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Fig .  3 ,  C o m p a r i s o n  o f  i m p l i e d  v o l a t i l i t i e s  a n d  i n t r a - d a y  e s t i m a t e s .  

The correlation between the implied volatilities and the intra-day volatility 
estimates is 0.66. These two volatility measurements are plotted against each other 
on Fig. 3. 

5. ARCH models with volatility estimated from intra-day quotations 

Models and results are first discussed for daily returns and are subsequently 
discussed for hourly returns. Daily models are straightforward because they avoid 
estimation of intra-day, seasonal volatility patterns. Hourly models, however, are 
more incisive because of the much larger number of observed returns. 

5.1. A general model for daily returns 

ARCH models are estimated for daily spot returns, R, = In (SJS  t_ j), obtained 
from rates when the PHLX closes. All the ARCH models are estimated using data 
for the set of PHLX trading days. Our set of 253 daily returns is small. 

The results are unusual and only need to be discussed when the conditional 
distribution of returns is normal with mean zero and a conditional variance h, that 
depends on the information K,_ 1, given by combining the information from 
options trades with the set of five-minute returns up to time t -  1. The options 
information is summarised by the implied volatility term i t_ ~. The volatility 
information provided by the five-minute returns is summarised by the estimate 

Ut- 1" 
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Table 2 
Parameter estimates for daily ARCH models that include intra-day volatility estimates 
ity implied volatilities 

and short-matur- 

c × 105 a b d e max. In(L) 

3.484 (3.55) 0.329 (2.01) 
0.204 (1.95) 0.956 (45.87) 0.000 
0.203 (1.94) 0.000 0.956 (45.78) 
0.203 (1.89) 0.000 0.956 (44.38) 0.000 

1.000 
0.897 (0.64) 0.683 (2.88) 
0.897 (0.64) 0.000 0.000 0.683 (2.88) 
0.897 (0.64) 0.000 0.000 0.000 0.683 (2.88) 

868.66 
871.05 
871.05 
871.05 
870.95 
873.04 
873.04 
873.04 

The numbers in parentheses are t-statistics, estimated using the Hessian matrix and numerical second 
derivatives, t-statistics are not reported when an estimate is less than 10 -6 . 
The 24-hour conditional variance h t is the product of the 24-hour deseasonalised conditional variance 
hf and a multiplier that is either 1, M (for Mondays) or H (for holidays). The deseasonalised 
conditional variance is deftned by h7 = c + aR2_ i( hT- i / ht_ i ) + bh T_ i + d~)* L + eit*_ t. The terms 
Rt- t, tT- i and it* i are, respectively, daily returns, intra-day volatility estimates and the squares of 
scaled implied volatilities. All parameters are constrained to be non-negative. In the fifth row, e is 
constrained to equal one. The estimates of M and H for the most general model are 1.44 and 1.74, 
standard errors 0.34 and 0.89, respectively. 

The  fo l lowing  mode l  makes  use of  condi t ional  var iances  h,* appropriate for 

24-hour  per iods after r emov ing  mul t ip l ica t ive  Monday  and hol iday  effects,  def ined 

by Eq. (1): 

R , I K , _ , - N ( O ,  h t ) ,  (8 )  

h, = h ; ,  M h  t or H h ; ,  (9a)  

h;  = c + a R  2_ ,( h;_ y h , _ ~  ) + bh;_  1 + dr,*_ 1 + eiT_ 1 , (9b )  

v,*, = v • , / f ,  (10a)  

• , .2 , / f ,  ( lOb)  l t -  1 ~ l t -  

f =  196 + 4 8 M +  8 H .  (10c )  

The  parameter  vector  is 0 = (a ,  b, c, d, e, M,  H) .  The  terms v~_ 1 and i z t-1 are 
d iv ided by f to conver t  these annual  quanti t ies into quanti t ies appropriate  for a 
24-hour  period. 

5.2, Resu l t s  f o r  dai ly  re turns  

Table  2 presents  results for the general  mode l  and seven special  cases. W h e n  

the history of  f ive-minute  returns contains  all re levant  informat ion  about  future 
volati l i ty,  the options parameter  e is zero. An  es t imat ion with this constraint  

produces  a surprise, when  the initial value h o is an addit ional  parameter .  As  
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a = d = 0, the conditional variances are deterministic, hence if the unconditional 
variance is /z h = c / ( 1  - b)  then: 

h ;  = + a ' (  ho - (11) 

This result is less surprising when we recall the volatility estimates plotted on Fig. 
1. The twelve months begin with high volatility followed by a long period during 
which volatility does not change much. The above edge solution is unlikely to be 
estimated if the period of exceptionally high variance is anywhere other than at the 
beginning of the sample. Ex post, the selection of dates for the sample period is 
rather unfortunate! 

The edge solution is a consequence of an unusual volatility pattern found in a 
small sample. Small samples can give more ordinary results, for example a = 0.035 
and b = 0.917 for GARCH(1, 1) estimated from the daily D M / $  rate from 
September 1994 to August 1995. 

Next, consider models that make use of the information in implied volatilities. 
The specification 

h t = c + e l  t 1 (12) 

has a maximum likelihood that is 1.99 above that of the edge solution. Estimation 
of the most general model simply produces the linear function of squared implied 
volatility above; the estimates of a, b and d are all zero. 

The results are compatible with the hypothesis that there is no incremental 
volatility information in the dataset of five-minute returns, when calculating daily 
conditional variances. However, the hypothesis that there is no incremental 
volatility information in the implied volatilities is dubious. 

5.3. In t ra -day  s e a s o n a l  mul t ip l i e rs  

We now multiply the number of returns used to estimate models by 24. The 
much larger sample size provides a reasonable prospect of avoiding the unsatisfac- 
tory edge solutions found for daily returns. Before estimating conditional variances 
for hourly returns we must, however, produce estimates of the intra-day seasonal 
volatility pattern. We present simple estimates here. Our estimates ignore the 
effects of scheduled macroeconomic news announcements; we discuss the sensitiv- 
ity of our conclusions to this omission in Section 5.6. Andersen and Bollerslev 
(1997) provide different estimates based upon smooth harmonic and polynomial 
functions. 

It may be helpful to review some notation before producing the seasonal 
estimates. The time t is an integer that counts weekdays, n is the number of 
5-minute returns in one day ( =  288) and Rt,  i is a 5-minute return; i = 1 identifies 
the return from 14.30 to 14.35 US eastern time (ET) on the previous day (i.e. 
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t - 1). . .  i = 288 is the return from 14.25 to 14.30 ET on day t. Returns over 24 
hours and over 1 hour periods indexed by j are respectively given by 

n 12j 

R, = ERr.,  and r,,j = Z (13) 
i=  1 i=  1 2 ( j -  1)+ 1 

Sums of squared returns provide simple estimates of price variability and averages 
across similar time periods can be used to estimate the seasonal volatility pattern. 
Let N be the number of days in the sample. It would be convenient if the seasonal 
pattern could be described by 24 one-hour, multiplicative, seasonal variance 
factors s 2, with ~ 4 1  s~ = 24. A natural estimate of the variance multiplier for 
hour j is given by 

2 R s - N  ~ 1 2 j  2 
7"~'--'t = 1 ~-"i = 1 2 ( j -  1 ) +  I Rt,i 

s~JZ= ~2 N Z" 2 (14) 
t = l  i=lRt, i  

However, the seasonal pattern varies by day of the week, as might be expected 
from Table 1 and thus it appears preferable to estimate 120 multiplicative factors 
that average one over a complete week. 

A second way to estimate variance multipliers takes account of the day of the 
week. Let S t be the set of all daily time indices that share the same day-of-the-week 

2.5 

| 
15 

il 
0.5 
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- -A- -Wednesday ] \  
--~---Thursday ] \ 

i ~ i ~ L i i L L i i i t , i q i i i ~ J i 
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Fig. 4, D M / $  intra-day standard deviation multipliers. 
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as time index t. Let N, be the number of time indices to be found in S t. Then a set 
of 120 factors are given by: 

24N Y~ E s,Y'.Iz--:le(j 1)+ I R~,i 
g2 = (15)  

s ' N  ~ n  D 2  
t , j  N t  z"~s= l ~"~i= l *t s, i  

Fig. 4 is a plot of standard deviation multipliers, gt,j. The final hourly interval, 
j = 24, is the hour ending at 14.30 ET (19.30 GMT, winter) when the options 
market closes. The first interval, j = 1, is the hour beginning after the previous 
day's options close. 

The multipliers are generally higher for intervals 13 to 24, corresponding to 
07.30 until 19.30 local time in London, with the highest levels in intervals 18 to 
23 when both US and European dealers are active. The Thursday and Friday 
spikes, at interval j = 19, reflect the additional volatility when many US macroe- 
conomic news reports are released in the hour commencing at 08.30 ET. Edering- 
ton and Lee (1993, 1995) provide detailed documentation of this link with 
macroeconomic news. The lower local maximum, at j = 13, occurs when trade 
accelerates in Europe in the hour commencing at 07.30 local time in London. The 
Monday spike earlier in the day, at j = 6, is the start of a new week in the Far 
East markets. 

5.4. A model for hourly returns 

An ARCH specification for hourly returns that is similar to that considered for 
the daily returns involves hourly returns rtj ,  information sets Kt, j_ j, recent 
five-minute returns R,. i, one-hour realised variances V,.j, one-hour conditional 
variances ht, j, one-hour deseasonalised conditional variances ht* 4 and the multipli- 
ers gt,j- The specification also incorporates the annualised implied volatility i,_ 
calculated at the previous close; hourly implieds are not available to us, although 
we would not expect them to contribute much because the implieds change slowly. 
The information set K,,j_ 1 is defined to be all relevant variables known at the end 
of hour j-1 on day t, namely the implieds it_ l, i,_ 2 . . . . .  the latest five-minute 
r e t u r n  Rt.12(j_ 1) and all previous five-minute returns. 

The most general ARCH model that has been estimated for hourly returns is: 

G.j]Kt.j_1 ~ D~(m,d, ht.j), 

m t , j  = q ~ r t , j  1, 

h,,j= g2,jh;,j, 

* 2 ^2 • * 
= , - , l /  t , j - 1  - ~ - e l t - l ,  ht,j c+ar , .g-1 /s , , j - l  +bh[ i  l +dE,~-  ~2 

12( j - -  1) 

Vt,j-i = E R~,i, 
i =  1 2 ( j - 2 ) +  1 

.* = i 2 
l t -  1 t -  l / f ,  

(16a) 

(16b) 

(16c) 

(16d) 

(16e) 

(16f) 
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for some number f that does not need to be estimated; we set f equal to the 
number of annual hourly returns (24 × 252). The subscript pair t,i refers to the 
time interval t - 1, n - i whenever i is not positive. The distribution D~(mt. j, 
h,.)  is GED with thickness parameter v, mean mt, j and variance hi. j. The 
parameter vector is 0 =  (a, b, c, d, e, 05, u). As the autoregressive, mean 
parameter 05 is always insignificant, we only discuss results when 05 is constrained 
to be zero. 

Eq. (16d) contains terms, with coefficients a and d, that are both measures of 
hourly return variability. Both measures are included to permit comparisons of the 
information content of five-minute and hourly returns. 

5.5. Results for hourly returns 

Table 3 presents results for 6049 hourly returns when 120 seasonal volatility 
multipliers are included in the models. The maximum log-likelihood increases 
substantially when 120 day-of-the-week multipliers replace 24 hourly multipliers, 
typically by about 65 for conditional normal distributions and by about 22 for 
conditional GED distributions. Consequently, our discussion of the results is based 
upon models with 120 intra-day seasonal multipliers. All our observations and 
conclusions are also supported by numbers in a further table, available upon 
request, for models that have only 24 seasonal multipliers. 

The lower panel of Table 3 shows that the conditional distribution of the hourly 
returns is certainly fat-tailed. The GED thickness parameter is estimated to be near 
1.15 with a standard error less than 0.03. Conditional normal distributions are 
rejected for the most general specification and all the special cases. The log-likeli- 
hood ratio test statistic is 130.26 for the general specification with the null 
distribution being X 2. A thickness parameter of 1 defines double negative-ex- 
ponential distributions so the hourly returns have conditional distributions that are 
far more peaked and fat-tailed than the normal. 

Our assumption of the GED for the conditional distributions does not ensure 
consistent parameter estimates and standard errors if the assumption is false. The 
quasi-ML estimates in the upper panel of Table 3 are consistent although they are 
not efficient. 

The results in the lower panel of Table 3 fall into three major categories, and 
are discussed separately. The conclusions are the same if we focus on the upper 
panel for normal distributions. 

First, consider models that only make use of returns information. The models 
that incorporate information more than one-hour old, through parameter b, have 
significant parameters for both recent information (the last hour, through a and d) 
and old information. This is the usual situation when ARCH models are estimated 
and so we no longer have the curious edge solutions discussed for the daily returns 
in Section 5.2. When five-minute returns are used, but hourly returns are not 
(a = 0; b, d > 0), the maximum of ln(L) is 23 more than the maximum when only 
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Table 3 
Parameter estimates for ARCH models of hourly returns with 120 seasonal terms 

c × 10 5 a b d e v max. In(L) 

Panel A: normal distribution 
0.1321 
(27.29) 
0.0012 0.9490 
(2.35) (115.84) 
0.0012 0.0196 0.9743 
(3.24) (5.58) (197.49) 
0.0012 0.0045 0.9480 
(2.44) (1.14) (110.71) 

0.0000 

0.0000 0.1046 0.2926 
(6.98) (3.78) 

0.0000 0.1766 
(1.70) 

0.0000 0.0713 0.1812 
(4.51) (2.14) 

0.2875 
(13.38) 
0.0352 
(6.49) 

0,0319 
(5.38) 

0.1437 
(7.01) 
0.0876 
(4.22) 

0.6528 
(54.99) 
0.6528 
(54.88) 
0.3935 
(8.20) 
0.4141 
(6.76) 
0.4127 
(8.30) 

2 31848.67 

2 31963.41 

2 31933.21 

2 31964.09 

2 31945.15 

2 31945.15 

2 31999.55 

2 31997.85 

2 32011.87 

Panel B: GED distribution 
0.1232 0.3197 
(19.12) (10.68) 
0.0008 0,9434 0.0408 
(1.25) (89.55) (5.53) 
0.0013 0.0227 0.9707 
(2.38) (4.45) (136.35) 
0.0009 0.0028 0.9431 0.0387 
(1.31) (0.52) (87.44) (4.65) 

0.6482 
(39.05) 

0.0000 0.6482 
(38.98) 

0.0000 0.1221 0,2590 0.4034 
(5.74) (2.66) (6.71) 

0.0000 0.2212 0.1678 0.3641 
(1,88) (5.96) (5.38) 

0.0000 0.0808 0.1801 0.1099 0.3887 
(3.64) (1.83) (3.87) (6.71) 

1.1025 32193.31 
(42.42) 
1.1460 32253.21 
(41.90) 
1.1376 32230.24 
(41.88) 
1.1463 32253.36 
(41.89) 
1.1418 32231.90 
(41.58) 
1.1458 32231.90 
(41.58) 
1.1598 32266.90 
(41.40) 
1.1594 32268.01 
(41.51) 
1.1638 32277.00 
(41.45) 

The numbers in parentheses are t-statistics, estimated using the hessian matrix and numerical second 
derivatives. All parameters are constrained to be non-negative, t-statistics are not reported when an 
estimate is less than 10 -6 . 
The one-hour conditional variance is defined by h,,j = g~jh~,j, ht~ j = c + ar2)_ l / g~j -  I + bht~)- I + 

t , , - /  , ,s-  i + eiT- i. 
The terms rt, j_ l ,  Rt,i and it* I are, respectively, one-hour returns, five-minute returns and the squares 
of scaled implied volatilities. The conditional distributions are normal distributions in panel A and are 
generalised error distributions, with thickness parameter v, in panel B. 
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hourly returns are used (d = 0; a, b > 0). There is thus more relevant volatility 
information in five-minute returns than in hourly returns. This information comes 
from more than twelve five-minute returns, as expected, because the maximum of 
In(L) decreases by 60 when older information is excluded (a = b = 0; d > 0). 
When all the returns variables are included in the model, a is insignificant and 
much smaller than d. The persistence estimates, given by the sum a + b + d, are 
between 0.984 and 0.993 when old information is included (b > 0). 

Second, consider models that only make use of daily implied volatilities. The 
variable it*_ 1 is biased because estimates of the multiplier e are significantly 
smaller than 1. Some of this bias is presumably due to an unsuitable choice for the 
constant f that converts annual variances into hourly variances. When e and f are 
unconstrained the maximum of ln(L) is 21 less than the maximum when spot price 
quotations alone are used. This shows that five-minute returns are more informa- 
tive than implied volatilities, at least when estimating hourly conditional variances. 

Third, consider models that make use of five-minute returns, hourly returns and 
daily implied volatilities. The most general model in the final row of Table 3 is 
estimated to have a zero intercept c and the parameters a, d and e have t-ratios 
above 3.5 and thus are significant at very low levels. Deleting the implied 
volatility contribution from the most general model would reduce the maximum of 
In(L) by 24. Alternatively, deleting the quotations terms would give a reduction of 
45. It is concluded that both the quotations and the implied volatilities contain a 
significant amount of incremental information. 

5.6. Results when scheduled news is incorporated 

The hourly seasonal volatility multipliers are particularly high in the hour 
commencing at 08.30 ET when many US macroeconomic news reports are 
released. This effect is most prominent on Fridays. The volatility multipliers used 
in the preceding analyses are, for example, the same for all Friday hours 
commencing at 8:30 regardless of any news releases. This methodology might 
induce systematic mis-measurements of the volatility process. We have assessed 
the importance of this issue by comparing the results when there are 120 volatility 
multipliers with further results when either 121 or 144 multipliers are used. 

Our first set of 121 multipliers contains two numbers for Friday 08.30 to 09.30 
ET: one multiplier for those Fridays that have a relevant report and another 
multiplier for the remaining Fridays. Our first set of 144 multipliers contains two 
numbers for each of the 24 hours from Thursday 14.30 to Friday 14.30 ET, one 
used when there is a relevant report and the other when there is not. We have 
defined a relevant report as a news announcement about one or more of the six 
significant macroeconomic variables listed by Ederington and Lee (1993, p. 1189): 
employment, merchandise trade, PPI, durable goods orders, GNP and retail sales. 
These reports were issued on 25 of the Fridays in our sample. 

We find that the maximum of the log-likelihood function increases by similar 
amounts when there are more multipliers whichever model is estimated. Consider 
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the nine log-likelihood values reported in Table 3, panel B, for nine specifications 
with 120 multipliers. These values increase by between 6.6 and 8.6 when 121 
multipliers are used and by between 16.7 and 19.6 when 144 are used. Conse- 
quently, as our conclusions depend on substantial log-likelihood differences across 
specifications these conclusions do not change when the additional multipliers are 
used. 

It may be objected that the Fridays have been partitioned by announcements 
rather than by the impact of unexpected news. Second sets of 121 and 144 
multipliers have been calculated by separating the 25 Fridays having the highest 
realised volatility from 08.30 to 09.30 from the remaining Fridays. The results are 
then similar, as 19 of the 25 high-volatility hours include a relevant announce- 
ment. The increases in the log-likelihoods from the values reported in Table 3, 
Panel B are now in the ranges 8.4 to 10.7 and 9.3 to 11.7, respectively, for 121 
and 144 multipliers. We note that the first, second, fourth and fifth Fridays in the 
ranked list coincide with employment reports but the third ranked Friday has no 
relevant announcements. 

The estimates of the parameters a, b, d and e change very little when the 
number of multipliers is increased above 120. The magnitudes of the changes are 
all less than 0.03 when the most general model is estimated. When the general 
model is constrained by ignoring the options information (e = 0), the persistence 
measure a + b + d is always between 0.984 and 0.985. 

5. 7. Results f o r  quarterly subperiods 

It could be possible that some of the conclusions are only supported by the data 
during part of the year studied. The higher than average realised volatility during 
the first quarter, from October to December 1992, might be an unusual period 
whose exclusion would reverse some of the conclusions. 

The models whose parameter estimates have been given in the lower panel of 
Table 3 for the whole year in the datasets have been re-estimated for the four 
quarters of the year commencing in October 1992 and in January, April and July 
1993. The same 120 seasonal multipliers are used for the whole year and for each 
of the four quarters. All the conclusions for the whole year are supported by each 
quarter of the data: (1) when quotations alone are considered, five-minute returns 
have more volatility information than hourly returns and the relevant information 
is not all in the most recent hour (likelihood-ratio tests, 5% significance level), (2) 
five-minute returns are more informative than implied volatilities when estimating 
hourly conditional variances and (3) there is significant incremental information in 
both the quotations and the implied volatilities (likelihood-ratio tests, 5% signifi- 
cance level). 

The reductions in the maximum of the log-likelihood when the quotations 
information is removed from the most general model are 14.7 for the first quarter, 
8.0 for the second quarter, 8.4 for the third quarter and 17.3 for the fourth quarter. 
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Table 4 
Parameter estimates for the most general ARCH model of hourly returns 

Sample c x 105 a b d e v max. In(L) 

Full 0.0000 0 .0808  0 .1801  0 . 1 0 9 9  0 . 3 8 8 7  1 .1638 32277.00 
(3.64) (1.83) (3.87) (6.71) (41.45) 

Q1 0.0000 0 .0775  0 . 0 0 0 0  0 .1591  0.4841 1.1621 7726.38 
(1.78) (2.54) (11 .01)  (20.94) 

Q2 0.0000 0 .0435  0 .2391  0 . 0 9 9 5  0 . 3 7 9 7  1 .2155 8622.58 
(1.19) (1.05) (1.84) (2.82) (21.04) 

Q3 0.0164 0 .1071  0 . 0 0 0 0  0 .0877  0 . 4 3 3 4  1 .1480  7676.79 
(0.32) (2.06) (1.53) (2.05) (20.05) 

Q4 0.0000 0 . 0 7 5 0  0 . 4 4 2 0  0 .1185  0.2120 1.1421 8255.79 
(1.47) (2.33) (2.50) (2.18) (20.65) 

The general model has conditional variances defined in Table 3. There are 120 seasonal multipliers and 
the conditional distributions are generalised error distributions. The estimates are for the full year 
(October 1992 to September 1993) and for the four quarters that commence in October 1992, January 
1993, April 1993 and July 1993. The numbers in parentheses are t-statistics. 

The incremental information in the quotations information is thus of a similar 
order of magnitude in all the quarters and the first quarter is not clearly different to 
the other three quarters. The reductions in the maximum of the log-likelihood 
when the information in implied volatilities is removed from the most general 
model are 4.2 for the first quarter, 4.4 for the second quarter, 2.4 for the third 
quarter and 2.1 for the fourth quarter. These reductions are much smaller and are 
similar across quarters. 

Table 4 presents the quarterly parameter estimates for the most general model. 

The estimates change little from quarter to quarter. The sum of the maximum 
log-likelihoods for the four quarters is only 4.54 more than the maximum when the 

same parameters are used for the whole year. Twice this increase in the log-likeli- 
hood is less than the number of extra parameters when four quarterly models are 
estimated compared with one annual model. There is no statistical evidence, 
therefore, that the parameters of the general model changed during the year. The 
variations in estimated parameters, by quarter, are minor relative to their estimated 
standard errors. 

5.8. Res idual  diagnost ic  statist ics and tests 

A time series of standardised residuals from our most general model for hourly 
returns is defined by: 

z T =  r t 4 /  h~t4 , T =  24 t  + j .  (17) 

The conditional variances are calculated using the maximum likelihood estimates 
of the model parameters for the whole year. In the unlikely event of our model 
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being perfect we would expect the standardised residuals to be approximately 
independent and identically distributed observations from a zero-mean and unit- 
variance distribution. 

There are 6049 numbers in the time series { zr}. Their mean is 0.005 and their 
standard deviation is 1.004. Their skewness is - 0 . 0 1  and their kurtosis is 5.30, 
both of  which are close to the values expected from a generalised error distribution 
with thickness parameter v near one (skewness = 0 for all v, and kurtosis = 6 
when v = 1). A histogram of the zr shows fat tails and a substantial peak around 
zero, which is a feature of  the GED when u is near one. Twenty of the 
standardised residuals are outside _ 4 although all of  them are inside + 5.5. 

The autocorrelations of  zv, ]zrJ and zr  2, from lags 1 to 10, are all within 
+0.025 = + 1 . 9 6 / ~  and therefore provide no evidence against the i.i.d. 
hypothesis, since all 30 tests accept this null hypothesis at the 5% level. The 
first-lag autocorrelations of  the three series are 0.003, 0.007 and - 0.007. Statisti- 
cally significant dependence is found at lags that are multiples of  24: for Zr at lag 
96 (correlation = 0.056), for Izr] at lags 24, 48, 72, 96 and 120 (the correlations 
are 0.045, 0.042, 0.049, 0.056 and 0.026) and for zr 2 at lags 24, 72 and 96 
(correlations 0.032, 0.022 and 0.062). These correlations show that the model is 
not perfect, presumably because of estimation errors in the hourly seasonal 
multipliers. Nevertheless, with all autocorrelation estimates within +0 .07  the 
model is considered a satisfactory approximation to the process that generates 
hourly returns. 

Estimates of  spectral density functions, calculated from the autocorrelations at 
lags 1 to 240 of  zr, Izrl and z 2, confirm this conclusion. No statistical evidence 
against the i.i.d, hypothesis can be found in the estimates at frequencies corre- 
sponding to either 24-hour or 120-hour cycles. There is a significant spectral peak 
at zero frequency for the series I zr] (t-statistic = 3.49) that may simply reflect 
very small positive dependence at several lags. 

6. Forecasts of realised volatility 

A comparison of  volatility forecasts can provide further evidence about incre- 
mental information. We divide the whole year of  data into an in-sample period 
from which ARCH parameters and intra-day seasonal volatility multipliers are 
estimated and an out-of-sample period for which the accuracy of  forecasts of  
hourly realised volatility is evaluated. We split the year into a nine-month 
in-sample period followed by a three-month out-of-sample period. Relative accu- 
racy measures for five forecasting methods are calculated using 120 seasonal 
volatility multipliers. The relative measures are not sensitive to the treatment of  
Friday macroeconomic announcements. Using our first set of  121 or 144 multipli- 
ers, defined in Section 5.6, has no effect on the rankings of  the forecasts. 



338 S.J. Taylor, X. Xu / JournaI of  Empirical Finance 4 (1997) 317-340 

Two measures of hourly realised volatility are forecast, defined first by 
12j 

at,j ,  , = ~_. R~, i (18) 
i=12( j - l )+ l  

and second by the same quantity adjusted for intra-day seasonality using 120 
volatility multipliers: 

at , j ,  2 = o t , , l , 1 /S2 j .  (19) 

Three forecasts of at4,j are defined by conditional variances ht, j obtained from 
variations on the most general ARCH model for hourly returns defined in Section 
5.4. The first forecast excludes all quotations information by imposing the 
restriction a = b = d = 0 on the ARCH model. The second forecast excludes the 
options information by requiring e = 0 in the ARCH model. The third forecast is 
calculated from the general model without any parameter restrictions. These three 

forecasts are denoted ft,~,l,t, l = 1, 2, 3. A fourth forecast, it,j, 1,4' is defined by ~ j  
multiplied by the in-sample average of the quantities at,j, 2. Four forecasts ft,j.2.t of 
at,~, 2 are defined in a similar way. The first three of these forecasts are now 
defined by deseasonalised conditional variances h,~j for the three ARCH specifica- 

tions and the fourth forecast is the in-sample average of at#.2. 
The accuracy of a set of forecasts f,,j.k.l of the outcomes a,j,k is reported here 

relative to the accuracy of a reference forecast given by the previous realised 

volatility 

f t , j , , , 5 = a t , j  ,,2sat,j, f t , j . z , 5 = a , , j  1,2- (20) 

Table 5 presents values of the relative accuracy measures 

Ela,,j,~ - f t , j ,k , t l  p 

Fk,l, p = E la , . i ,  k _ f,,j,k,5[ p (21) 

for powers p = 1, 2. The summations are over all hours in the out-of-sample 

period. The best of a set of five forecasts ft,j,k,I, l = 1 . . . . .  5, has the least value 

Table 5 
Measures of relative forecast errors when forecasting hourly realised volatility out-of-sample 

Forecast Error metric Absolute Absolute Square Square 
Seasonal adjustment No Yes No Yes 

1 options only 0.767 0.772 0.807 0.795 
2 quotations only 0.781 0.769 0.812 0.783 
3 options and quotations 0.731 0.731 0.797 0.776 
4 in-sample average 1.055 1.080 0.821 0.803 
5 lagged realised volatility 1 1 1 1 

The accuracy of forecasts is measured by either the absolute forecast error or the squared forecast error. 
Hourly realised volatility is forecast, either without or with a seasonal adjustment. 
Nine months are used for in-sample calculations and then three months for out-of-sample evaluations. 
The numbers tabulated are E l a -  ftl P / IEIa-  fs] p with a the realised volatility number, fl forecast l 
and p either 1 or 2. 



s.J. Taylor, X. Xu / Journal of Empirical Finance 4 (1997) 317-340 339 

of F. The least value of F is considered for each of the four columns in Table 5. 
The columns are defined by all combinations of p (1 or 2) and k (i  or 2). 

When accuracy is measured by absolute forecast errors, so p = 1, the best 
forecasts come from the general ARCH specification for both realised measures 
(k = 1, 2). This is further evidence that there is incremental volatility information 
in both the spot quotations and the options prices. The average absolute forecast 
error from the general specification is five per cent less than that from the next 
best specification. The second best set of forecasts are from quotations alone when 
the quantity forecast is adjusted for seasonality, but are from options prices alone 
when the quantity forecast is not adjusted, although the differences between the 
accuracies of the second and third best forecasts are small. 

The results are similar but less decisive when accuracy is measured by squared 
forecast errors ( p  = 2). The most general ARCH specification again gives the best 
out-of-sample forecasts. However, the average of the squared forecast errors for 
the best forecasts are only slightly less than for the next best forecasts. This may 
be attributed to the marked skewness to the right of the distribution of the 
quantities to be forecast: this inevitably produces some outliers in the forecast 
errors whose impact is magnified when they are squared. 

7. Concluding remarks 

The evidence from estimating ARCH models using one year of exchange rate 
quotations for one exchange rate supports two conclusions. First, five-minute 
returns cannot be shown to contain any incremental volatility information when 
estimating daily conditional variances. This negative result may simply be a 
consequence of the small number of daily returns available for this study. Second, 
when estimating hourly conditional variances there is a significant amount of 
information in five-minute returns that is incremental to the options information. 
Furthermore, the quotations information then appears to be more informative than 
the options information. Thus there is significant incremental volatility information 
in one million foreign exchange quotations. This conclusion is confirmed by 
out-of-sample comparisons of volatility forecasts. Forecasts of hourly realised 
volatility are more accurate when the quotations information is used in addition to 
options information. 
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