
returns =

ln(pt) – ln(pt-1) 

The stylized facts: some typical time series

Material for the Lecture ‘Theory of Financial Markets’







‘Stylized Facts’: Most Elementary and 
Universal Time Series Characteristics

■■ Random walk (Random walk (martingalmartingal) property of prices) property of prices

■■ Fat tails of returnsFat tails of returns

■■ Clusters of volatilityClusters of volatility

■■ VolumeVolume--volatility correlationvolatility correlation



Fact 1: Random Walk (Fact 1: Random Walk (MartingalMartingal) Property of Prices) Property of Prices

Prices (or their logs) look like realizations of a simple procePrices (or their logs) look like realizations of a simple process: ss: 

pptt = = pptt--11 + + εεt         t         withwith E[E[εεtt ] = 0] = 0

if if εεt t is drawn from is drawn from a a fixed distributionfixed distribution, , one speaks one speaks of aof a random random walkwalk, , if if no no 
further assumptions are made other thanfurther assumptions are made other than E[E[εεtt ] = 0] = 0, , one speaks one speaks of aof a martingal martingal 
((note that this allows for dependence note that this allows for dependence in in the variance the variance ⇔⇔ volatility clusteringvolatility clustering))

random walk (random walk (martingalmartingal) implies: ) implies: 

oo absence of autocorrelations in returns (relative price changes),absence of autocorrelations in returns (relative price changes),
oo no predictability of future price developments,no predictability of future price developments,
oo efficientefficient price formationprice formation



FactFact 2: 2: Fat Tails Fat Tails ((LeptokurtosisLeptokurtosis) of ) of the the 

Distribution of Returns: Distribution of Returns: Typical HistogramsTypical Histograms



Fat tails are more clearly visible in logarithmic representation
of the histogram: 

probability for large returns: Prob(ret. > x) ∼ x-α with α ∈ [2,5]



Heavy Tails: History of Thoughts

� Daily returns exhibit leptokurtosis: probability of large realizations

is  always much higher than under a Normal distribution

� Puzzling, because returns are summable and should, therefore, follow the

Central Limit Law -> convergence to Normality (Bachelier, 1900)

� Mandelbrot/Fama (1963): Generalized Central Limit Law

-> hypothesis: convergence to Levy Stable Distributions

� Recently emerging consensus: daily returns follow neither Normal nor
Levy Stable distribution

� convergence to Normal only with low-frequency data (e.g., monthly returns)



Levy Stable Distributions

The so-called Levy Stable distributions are the limiting distributions of  sums of 
random variables.

Drawback: no general analytical solution is known, Levy distributions can only be 
described by their characteristic function (only for illustration, you don‘t have to 
learn this formula):

iδt - |c t | αs [1 - iß sgn(t) tan(αs/2)]            if αs ≠ 1
log E(eixt) =

it - |c t | [1 + iß (2/π) sgn(t) log |c t | ]         if αs = 1.

Parameters: ß, c, δ : parameters for skewness, scale and location,

αs: characteristic exponent, αs∈ (0,2], parameter for tail behavior

αs = 2: Normal distribution, αs < 2: Levy distributions with infinite variance

Advantages: stability under aggregation, bellshape, leptokurtosis 

Mandelbrot (1971): Most successful model in economics 



Basics of Extreme Value Theory

The tail behavior of most continuous distributions can be described by one of only 
three types of behavior:

� Finite endpoint (e.g., a uniform distribution over a finite interval)

� Exponential decline à la: F(x) = 1- exp(-x)  (e.g., the Normal distribution)

� Power-law decline à la: F(x) = 1- x-α (e.g., the Student t distribution)

α: tail index (the lower, the slower the decay in the tail, i.e., the more large 
realizations occur)

Empirical results for returns: power-law behavior with αααα ≈≈≈≈ 3 (cf. the values noted 
below the histograms)

Consequences: one rejects the Levy (α = αs ≤ 2) as well as the Normal distribution



Fact 3: Volatility clustering: autocorrelation in all 

measures of volatility, e.g. ret2, abs(ret) etc.

despite absence of autocorrelation in raw returns





The Baseline Stochastic Model for Volatility Clustering:

GARCH: Generalized Autoregressive Conditional Heteroscedasticity

returns follow:  rt = εt with εt ~ N(0, ht)

with (Engle, 1982; Bollerslev, 1986)

Usual results:

• GARCH(1,1) is sufficient to capture the volatility dynamics
• high persistence: α1 ≈ 0.1, β1 ≈ 0.9
• process is close to the non-stationary case, i.e. α1 + β1 ≈ 1 
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Example: Typical GARCH Estimates for Daily Returns

Data αααα0 αααα1 ββββ1

DAX
(1959 –1998)

4.14*10-6

(5.07)
0.1520
(7.61)

0.8186 
(49.86)

NYCI
(1966 – 1998)

1.04*10-6

(4.44)
0.0787 
(3.81)

0.9093 
(48.18)

US$-DM
(1974 – 1998)

8.50*10-7

(3.74)
0.1049 
(8.26)

0.8836
(80.45)

Gold
(1978 – 1998)

1.14*10-6

(2.46)
0.1023
(6.78)

0.8853 
(54.25)

t-values of the GARCH parameters are given in parenthesis.



Fact 4: Correlation between Volatility and Volume
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