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We present a stochastic volatility market model where volatility is correlated with return
and is represented by an Ornstein-Uhlenbeck process. With this model we exactly mea-
sure the leverage effect and other stylized facts, such as mean reversion, leptokurtosis
and negative skewness. We also obtain a close analytical expression for the characteristic
function and study the heavy tails of the probability distribution.

1. Introduction

During decades the diffusion process known as the geometric Brownian motion has

been widely accepted as one of the most universal models for speculative markets.

It was proposed by Osborne in 1959 1 when he observed that empirical distribu-

tions of prices were biased and in disagreement with the theoretical distribution of

Bachelier’s arithmetic Brownian dynamics.

However, specially after the 1987 crash, the geometric Brownian motion and its

subsequent Black-Scholes (B-S) formula were unable to reproduce the option price

data of real markets. Several studies have collected empirical option prices in order

to derive their implied volatility. These tests conclude that the implied volatility

is not constant and it is well-fitted to a U-shaped function of moneyness whose

minimum is at moneyness near to 1, i.e., when current stock price is equal to the

striking price. This effect is known as the smile effect and shows the inadequacy of

the Black-Scholes model since this assumes a constant volatility 2.

A possible way out to this inconsistency is assuming that volatility is not a

constant but an unknown deterministic function of the underlying price. The de-

terministic volatility still allows to manage the option pricing within the B-S theory

although in most of the cases it is not possible to derive an analytic option price.

Within this approach, there exists the ARCH-GARCH models and their subse-

quent extensions 3,4. These models do well in describing the implied volatility but

their disadvantage is that some of their parameters substantially change with time

frequency 5.

The stochastic volatility (SV) models are another possible choice. These models

assume the original log-Brownian motion model but, as their name indicates, with

random volatility. At late eighties several different SV models were presented 6,7,8.
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All of them propose a two-dimensional process involving two independent variables:

the stock and the volatility. These works are basically interested on option pricing

theory and ignore the statistical properties of the market model, although they are

indeed able to reproduce the smile effect.

After then there have appeared several papers extending and refining the original

SV models but again many of them are solely interested on adequately describe

empirical option prices. Stein and Stein 9 is an exception to this tendency because

they study the most important statistical properties of a volatility model following

an Ornstein-Uhlenbeck (O-U) process.

We believe that the relative small number of works dealing with market dynamics

based on SV models is essentially due to two reasons: (i) Their statistical properties

are difficult to be analytically derived, and the analysis is even much more involved

when there are correlations between volatility and stock. (ii) It is commonly asserted

that empirical data available are not enough for obtaining a reliable estimation of

all parameters involved in an SV model 10.

Our present work wants to modify these statements for the correlated Ornstein-

Uhlenbeck stochastic volatility (O-U SV) model because we are able to analytically

derive the main statistical properties of it. On the other hand, the leverage corre-

lation recently observed by Bouchaud etal. 11 allows us to estimate all parameters

involved not only in our O-U SV process but eventually in any SV process.

Recent research on empirical markets data has provided a set of requirements

that a good market model must obey. In this regard Engle and Patton 5 have listed

a number of stylized facts about the volatility. The results we will herein derive

conclude that the SV models are good candidates fairly accomplishing these stylized

facts. We will prove this and confront the statistical properties of the correlated

O-U SV model with the statistical properties of the daily return changes for the

Dow-Jones stock index.

The paper is divided in 7 sections. After this introduction, we present our

stochastic volatility market model in Section 2 and study the statistical properties

of the volatility in Section 3. Section 4 is specifically focussed on the leverage effect.

Section 5 is devoted to show how to estimate from the Dow-Jones index (1900-2000)

the parameters of the model. Finally, Section 6 concentrates on the derivation of the

probability distribution through obtaining the characteristic function. Conclusions

are drawn in Section 7 and technical details are left to Appendices.

2. The stochastic volatility market model

The starting point of any stochastic volatility model is the log-Brownian stochastic

differential equation:
dS(t)

S(t)
= µdt + σdW1(t), (2.1)

where µ is the drift and σ is the volatility. The SV models refine this dynamics

taking σ = σ(t) to be stochastic. There exist a large class of such models but,
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to our knowledge, the dynamics of σ is not definitively associated to any specific

process (see the monograph of Fouque etal. 10 or the review by Ghysels etal. 12).

We choose the Ornstein-Uhlenbeck (O-U) stochastic volatility model because, as

we will see shortly, it is one of the simplest approaches still reproducing the main

observed features of markets. We thus assume that the random dynamics of σ(t) is

given by 9

dσ(t) = −α(σ − θ)dt + kdW2(t). (2.2)

Equations (2.1) and (2.2) contain a two-dimensional Wiener process (W1(t), W2(t)),

where dWi(t) = ξi(t)dt (i = 1, 2), and ξi(t) is Gaussian white noise processes with

zero mean, i.e.,

E [ξi(t)] = 0 and E [ξi(t)ξj(t
′)] = ρijδ(t − t′). (2.3)

We note that the cross-correlation is given in terms of the Dirac delta function, i.e.,

δ(x) = 0 for all x 6= 0 and

∫ a

−∞

φ(z)δ(x − z)dz =

{

φ(x) −∞ < x < a,
0 otherwise;

(2.4)

where φ(x) is an arbitrary integrable function. Note that ρij = ρji and ρii = 1,

hence the components of ρij are reduced to

ρij =

{

1 if i = j
ρ if i 6= j,

(2.5)

where the parameter ρ is given by Eq. (2.3), i.e., E [ξ1(t)ξ2(t
′)] = ρδ(t − t′) which,

in terms of the Wiener process, is equivalent to say that E [dW1(t)dW2(t
′)] = 0

when t 6= t′, and

E [dW1(t)dW2(t)] = ρdt.

Thus ρ is the correlation coefficient and it has no definite sign (−1 ≤ ρ ≤ 1).

However, it is known that a negative ρ is able to provide the skewness observed

in financial markets 10. One of our objectives here is not only to show that ρ is

negative but also to estimate its value from empirical data.

In what follows it turns to be more convenient to work with the zero-mean return

defined as

dX ≡ dS

S
− µdt, (2.6)

and whose SDE reads

dX(t) = σ(t)dW1(t). (2.7)

The zero-mean return X(t) has a simpler dynamics than the stock price S(t) because

it only contains the random fluctuation σdW1. Nevertheless, this process still retains

the most interesting features of the whole dynamics. In the Appendix A, we give

en explicit expression for X(t) and derive some key features.
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3. The Ornstein-Uhlenbeck volatility process

We will now present the main properties of the O-U volatility. The starting point

is the solution of Eq. (2.2):

σ(t) = σ0e
−α(t−t0) + θ(1 − e−α(t−t0)) + k

∫ t

t0

e−α(t−t′)dW2(t
′), (3.8)

where we have assumed that the process started at time t = t0, when volatility

was σ0. From now on we will assume that the volatility is in the stationary regime.

This means that the market started long time ago thus t0 → −∞ and the stationary

volatility reads

σ(t) = θ + k

∫ t

−∞

e−α(t−t′)dW2(t
′), (3.9)

whose average value, variance and correlation are

E [σ] = θ, Var[σ] ≡ E
[

σ2
]

− E [σ]2 = k2/2α, (3.10)

and

E [σ(t + τ)σ(t)] = θ2 + (k2/2α)e−ατ . (3.11)

These expressions provide a physical interpretation of the parameters of the model,

especially θ, the expected volatility, and α, the inverse of the volatility “correlation

time” (see below).

Note that the stationary volatility (3.9) is a linear functional of the Wiener

process. Therefore, it is a Gaussian process (the same applies to “transient” volatil-

ity (3.8)). In consequence the stationary distribution is uniquely determined by the

mean and variance given in Eq. (3.10). That is,

pst(σ) =
1

2
√

πk2/α
e−α(σ−θ)/k2

. (3.12)

Before proceeding further we want to address the question of the sign of σ(t).

If one adopts the O-U process (2.2) as a model for stochastic volatility one may

argue that σ(t) has no definite sign which can be seen as an inconvenience for a

“good” SV model. Let us see that this is not really the case. First of all, the actual

evaluation of volatility is very difficult, not to say impossible, since volatility itself

is not observed. In practice, the so-called instantaneous volatility is derived from

lim
∆t→0

√

[X(t + ∆t) − X(t)]
2
/∆t, (3.13)

where we have used the zero-mean return defined above. Due to the limit ∆t → 0,

this equation has to be taken as an infinitesimal difference. We thus define

instantaneous volatility ≡
√

dX(t)2/dt. (3.14)



5

From Eq. (2.7) and the fact dW 2 = dt, we get

instantaneous volatility =
√

σ(t)2 = |σ(t)| . (3.15)

Observe that in this definition no sign is attached to the random variable σ(t).

3.1. The correlated process

As we have mentioned in Section 2, the model permits correlations between the stock

and the volatility. We will now examine the important effects of these correlations.

From Eq. (3.9), we see that the correlation between the stationary volatility and

the random component of return variations, dW1(t), is

E [σ(t + τ)dW1(t)] = k

∫ t+τ

−∞

e−α(t+τ−t′)E [dW2(t
′)dW1(t)] ,

which, taking into account Eqs. (2.3) and (2.5), can be written as

E

[

σ(t + τ)
dW1(t)

dt

]

= ρk

∫ t+τ

−∞

e−α(t+τ−t′)δ(t − t′)dt′. (3.16)

Finally (cf. Eq. (2.4))

E [σ(t + τ)dW1(t)] =

{

ρke−ατdt if τ > 0,
0 if τ < 0.

(3.17)

Therefore, for correlated SV processes future volatility is correlated with past return

variations, although past volatility and future return variations are completely un-

correlated. Moreover, ρ determines the sign of the correlation (3.17) because k is

positive. In the next section we will show how this property is able to reproduce

the leverage effect observed in real markets.

We finally note that, despite the existence of correlations, σ(t) and dW1(t) are

independent random quantities. This is a direct consequence of Itô convention

for stochastic integrals, because process σ(t) is independent of its driving noise

dW1(t) = ξ1(t)dt. Hence, as τ → 0− we have

E [σ(t)dW1(t)] = E [σ(t)] E [dW1(t)] = 0. (3.18)

Since dX(t) = σ(t)dW1(t). Eq. (3.18) implies that

E [dX(t)] = 0, (3.19)

in accordance with the name “zero-mean return” given to X(t).

3.2. Mean reversion

The effect of mean-reversion refers to the existence of a normal level of volatility

to which volatility will eventually return. This effect can be observed in financial
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markets 12. Practitioners believe that the current volatility is high or low compared

to a normal level of volatility and they assume that in the long run, forecasts of

the volatility should all converge to the same normal level. Hence, the average

of the instantaneous volatility (3.14) should converge to the normal level as time

tends to infinity, this is done, for instance, by Engle and Patton 5 who define the

normal level of volatility as the stationary average of the square of instantaneous

volatility (3.14):

lim
t→∞

E

[

dX(t)2

dt

∣

∣

∣

∣

∣

σ0

]

≡ normal level of volatility.

Note that the limit over time t indicates that process has begun in the infinite past

and, therefore, the volatility process is in the stationary state.

Our O-U volatility process appears to be an adequate candidate for describ-

ing this effect. Let us show this. From Eq. (2.7) and taking in to account the

independence of σ(t) and dW1(t) and that E
[

dW 2
1

]

= dt, we get

lim
t→∞

E
[

dX(t)2|σ0

]

= lim
t→∞

E
[

σ2(t)
∣

∣

∣
σ0

]

dt,

but the limit t → ∞ indicates that volatility has reached the stationary state.

Hence, the second moment of sigma is given by Eq. (3.10), and therefore

O-U normal level of volatility = θ2 +
k2

2α
. (3.20)

Observe that the O-U volatility has a constant and non zero normal level of volatility

and this is in accordance with the observed mean-reverting property mentioned

above.

Moreover, the average over σ2 given by Eq. (3.8), when the volatility is not yet

in the stationary state, is

E
[

σ2(t)|σ0, 0
]

=
[

σ0e
−αt + θ(1 − e−αt)

]2
+

k2

2α

(

1 − e−2αt
)

.

We observe that this average quickly tends to the normal level (3.20) as αt increases.

This is the reason why the magnitude of α allows us to classify the SV models

into: (i) fast mean reverting processes when 1/α ≪ t, and (ii) slow mean reverting

processes when 1/α ≫ t.

4. The leverage effect

It is commonly known that positive or negative sudden changes in the return have

not the same impact on the volatility. Fisher Black in 1976 13 was the first to find

empirical evidence on this and observed that the volatility is negatively correlated

with return variations. A qualitative explanation of this effect is that a fall in the

stock prices implies an increase of the leverage of companies, which in turn entails



7

more uncertainty and hence higher volatility. Nevertheless, it has also been argued

that the leverage alone is too small to explain empirical asymmetries in prices 12.

Another possible explanation is that news on any increase of volatility reduce the

demand of stock shares because of investor’s risk aversion. The consequent decline

in stock prices is followed by an increment of the volatility as initially forecasted by

news, and so on 12.

Although the mechanism still lacks of a clear explanation, the leverage effect

denomination indicates this negative correlation. To our knowledge, this effect has

only been studied in a qualitative manner until very recently when Bouchaud etal. 11

have performed a complete empirical analysis containing new important information

on this issue.

Following Bouchaud etal. 11, we quantify the leverage effect by means of the

leverage correlation function that we define in the form

L(τ) ≡ E
[

dX(t + τ)2dX(t)
]

Var[dX(t)]2
, (4.21)

where X(t) is the zero-mean return defined in Eq. (2.6). Bouchaud etal. 11 have

analyzed a large amount of daily relative changes for either market indices and stock

share prices and find that

L(τ) =

{

−Ae−bτ if τ > 0,
0 if τ < 0,

(4.22)

(A > 0). Hence, there is a negative correlation with an exponential time decay

between future volatility and past returns changes but no correlation is found be-

tween past volatility and future price changes. In this way, they provide a sort of

causality to the leverage effect which, to our knowledge, has never been previously

mentioned in the literature 10,14.

Let us see how our correlated O-U SV model is able to exactly reproduce this

result. In effect, in the Appendix A we show that

Var[dX(t)] = θ2(1 + ν2)dt (4.23)

where

ν2 ≡ k2/(2αθ2), (4.24)

is the intensity of volatility fluctuations compared to the expected volatility (see

Eq. (3.10)). On the other hand we prove in Appendix A that

E
[

dX(t + τ)2dX(t)
]

=

{

2ρk θ2
[

1 + ν2e−ατ
]

e−ατdt2 if τ > 0,

0 if τ < 0.
(4.25)

Hence the leverage correlation function (4.21) is

L(τ) = 2ρ

[

ν
√

2α
(

1 + ν2e−ατ
)

(1 + ν2)2θ

]

e−ατ for τ > 0, (4.26)
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Fig. 1. The leverage effect in the Dow-Jones index. We plot the leverage function L(τ) for the
Dow-Jones index from 1900 until 2000. We see that there exists a non-negligible correlation when
τ > 0 and negligible when τ < 0. Observe that correlation strongly fluctuates when −3 < τ < 2.
We also plot a fit in solid lines with our O-U SV leverage function (4.26). This fit helps us to
estimate α and ρ (see Section and Table 2 for more details).

and

L(τ) = 0 for τ < 0. (4.27)

We observe that sign of the leverage function is solely determined by the sign of

ρ. Therefore, the O-U SV model is able to reproduce the empirically observed

leverage correlation. In Fig. 1 we show the leverage effect for the Dow-Jones index

(1900-2000) and plot the leverage function given by Eq. (4.26).

5. Forecast evaluation

Any acceptable market model is required to “forecast” the dynamics of the market.

In other words, the model must be able to reproduce the market behavior and have

an easy and systematic methodology for estimating its parameters. In our model

these parameters are ρ, k, θ, and α . Fouque etal. 15 for the same model only

estimate two of these parameters (k and θ) from the empirical second and fourth
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moment of daily normalized stock changes. Unfortunately they cannot give a clear

estimation of the volatility auto-correlation time 1/α and of the magnitude of ρ

although it was already known that ρ has to be negative in order to reproduce the

desired skewness. Let us now see that with the help of the leverage effect we can

completely estimate all parameters of the model.

We will perform the empirical estimation of the Dow-Jones index daily return

changes by approximating dX by ∆X , i.e.,

dX(t) ≃ X(t + ∆t) − X(t),

where ∆t = 1 day. From Eqs. (4.23) and (A.7) of Appendix A, we have

Var[∆X ] = θ2(1 + ν2)∆t, Var[∆X2] = 2θ4
[

4(1 + ν2)2 − 3
]

∆t2,

where ν2 = k2/(2αθ2). From this we get

1

(1 + ν2)2
=

4

3
− 1

6

Var[∆X2]

Var[∆X ]2
. (5.28)

Hence, we can estimate the value of ν2 once we know the empirical values of these

variances. The Dow-Jones index proportionates the daily variances of ∆X and ∆X2

and, subsequently, gives an estimated value for ν2. Afterwards, θ is estimated with

the knowledge of ν2 and the empirical Var[∆X ]. In Table 1, we briefly report these

operations and give the corresponding estimation of ν2 and θ2 for the Dow-Jones

index time-series from 1900 until 2000.

Since (1 + ν2)2 is always positive and (1+ ν2)2 ≥ 1, we see from Eq. (5.28) that

2 ≤ Var[∆X2]

Var[∆X ]2
< 8,

and the kurtosis, γ2 = Var[∆X2]/Var[∆X ]2 − 2, has the bounds

0 ≤ γ2 < 6, (5.29)

showing that the model is never platykurtic. For the Dow-Jones index γ2 = 1.72

and which is consistent with requirement (5.29). However, as Cont reports 16, there

exists other markets or even intraday tick data possessing a higher kurtosis outside

inequality (5.29).

The leverage effect provides the way for estimating the correlation coefficient ρ

and the characteristic time 1/α. Indeed, the best fit of the leverage function (4.26)

to the Dow-Jones daily data (Fig. 1) gives a characteristic time decay 1/α ≃ 20

days. We thus compare the empirical leverage with our theoretical leverage (4.26)

when τ → 0+,

L(0+) = 2ρ
ν
√

2α

(1 + ν2)θ
, (5.30)
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Table 1. The O-U SV estimation from the return variances. We estimate the parameters of the
model from Dow-Jones historical daily returns from 1900 to 2000. We take the variances given by
Eq. (4.23) and use the identity (5.28) for deriving the estimated quantities ν2 and θ.

Estimators Dow-Jones daily return Theoretical values

Var[∆X(t)] 1.68 × 10−4 θ2 (1 + ν2)∆t

Var
[

∆X(t)2
]

10.5 × 10−8 2θ4
[

4(ν2 + 1)2 − 3
]

∆t2

Parameter estimation ν2 = 0.18

θ = 18.9% year−1/2

Table 2. The O-U SV estimation from the leverage. We estimate the parameters ρ, α and k from
the fit of the leverage correlation derived from the Dow-Jones stock index data plotted in Fig. 1.
For doing this, we take the ν2 estimation given by Table 1 and assume that the leverage function
is given by Eq. (5.30). Observe that magnitudes L(0+) and α estimated from the Dow-Jones
index are of the same order as those given by Bouchaud etal. 11 for a combination of several stock
indices.

Estimators Dow-Jones data estimation

L(0+) -12.5

α 0.05 day−1

1/α 19.6 days

ρ -0.58

k =
√

2αν2θ2 1.4 × 10−3days−1
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and get an estimation of ρ once we know α = 0.04 days−1 and ν2 = 0.18. Finally,

we can derive k from the definition given by Eq. (4.24) (see Table 1). All these

operations are summarized in Table 2.

In Fig. 2 we simulate the O-U SV resulting process with the parameters es-

timated above. We follow the random dynamics for ∆X(t) and compare it with

the empirical Dow-Jones time series during approximately one trading year. We

also simulate the ordinary geometric Brownian motion, i.e., assuming a constant

volatility whose value is directly estimated from data as in Table 1. We clearly

see in Fig. 2 that the ordinary geometric Brownian model cannot describe neither

largest nor smallest fluctuations of daily returns. Hence, in comparison with the

ordinary Brownian modelisation, we conclude that the SV model describes a very

similar trajectory than that of the Dow-Jones. This is quite remarkable, because

we have simulated last year’s trajectory using all past data of the Dow-Jones index

with almost equal results to the actual case. This, in turn, shows the stability of

parameters. We may thus say that the model is fairly useful for “predicting” the

stock dynamics (at least for one year period) using market history.

6. The probability distribution

We will now obtain the probability distribution of the model. This problem has been

recently addressed by Shöbel and Zhu 17 who, using the Feynmann-Kac functional,

end up with an expression for the two-dimensional characteristic function of the

joint process (R(t), σ(t)). Here we take a different path that, besides being simpler,

allows us to get an analytical expression of the return characteristic function, which

has more practical interest than the joint density. The analysis can be done in terms

of the return R(t) = lnS(t)/S0 but we prefer to deal with the zero-mean return

X(t) since, although the calculation is basically identical, the expressions derived

are shorter and handier.

6.1. The characteristic function

Let p2(x, σ, t|x0, σ0, t0) be the joint probability density of the two-dimensional diffu-

sion process (X(t), σ(t)) described by the pair of SDE’s given by Eqs. (2.7) and (2.2).

This density obeys the following backward Fokker-Planck equation 18:

∂p2

∂t0
= α(σ0 − θ)

∂p2

∂σ0
− 1

2
σ2

0

∂2p2

∂x2
0

− ρkσ0
∂2p2

∂σ0∂x0
− 1

2
k2 ∂2p2

∂σ2
0

, (6.31)

with final condition

p2(x, σ, t|x0, σ0, t) = δ(x − x0) δ(σ − σ0). (6.32)

Before proceeding further we note that, since all coefficients in Eq. (6.31) are in-

dependent of x, x0, t and t0 and the final condition only depends on the differences

x − x0 and t − t0, then (X(t), σ(t)) is an homogenous process in time and return.

Therefore,

p2(x, σ, t|x0, σ0, t0) = p2(x − x0, σ, t − t0|σ0). (6.33)
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Fig. 2. Path simulation and Dow-Jones historical time-series. We show a Dow-Jones daily returns
sample path (top figure), the O-U SV process simulation, and the geometric Brownian process
(with constant volatility) simulation (bottom figure). For the OU-SV process, we have taken
the parameters given by Tables 1 and 2. For the ordinary geometric Brownian motion, σ2 =
Var[∆X]/∆t and this variance is given in Table 1. The dynamics is traced over approximately a
trading year (the empirical path approximately corresponds to 1999 trading year).
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Moreover, one easily sees that the marginal density of the return,

pX(x − x0, t − t0|σ0) =

∫ ∞

−∞

p2(x − x0, σ, t − t0|σ0)dσ,

also obeys the same partial differential equation than p2, Eq. (6.31), which due to

homogeneity can be written in the form∗

∂pX

∂t
= −α(σ0 − θ)

∂pX

∂σ0
+

1

2
σ2

0

∂2pX

∂x2
− ρkσ0

∂2pX

∂σ0∂x
+

1

2
k2 ∂2pX

∂σ2
0

, (6.34)

where pX = pX(x − x0, t − t0|σ0) and the initial condition is

pX(x − x0, 0|σ0) = δ(x − x0).

Partial differential equation (6.34) is the starting point of our analysis. Again, due

to homogeneity we can assume, without loss of generality that x0 = 0 and t0 = 0.

Observe that Eq. (6.34) is quite involved because of the correlation between the

volatility and the return, i.e., because of the crossed derivative term. Therefore,

there seems to be a tremendous task if one tries to attack the problem directly

from Eq. (6.34). However, Fourier analysis proportionates the necessary tools to

obtain an analytic solution of the problem. Solution that is expressed in terms of

the return characteristic function (cf) defined by

ϕX(ω, t|σ0) =

∫ ∞

−∞

eiωxpX(x, t|σ0)dx.

This is done in Appendix B where we prove that

ϕX(ω, t|σ0) = exp[−A(ω, t)σ2
0 − B(ω, t)σ0 − C(ω, t)], (6.35)

where

A(ω, t) =
ω2

2

(

sinh ηt

η cosh ηt + ζ sinh ηt

)

, (6.36)

B(ω, t) =
ω2αθ

η

(

cosh ηt − 1

η cosh ηt + ζ sinh ηt

)

, (6.37)

C(ω, t) =

[

(ωαθ)2

η2
+ iωρk − α

]

t/2 +
1

2
ln

(

cosh ηt +
ζ

η
sinh ηt

)

− (ωαθ)2

2η3

[

2ζ(cosh ηt − 1) + η sinh ηt

η cosh ηt + ζ sinh ηt

]

, (6.38)

and

η =
√

α2 − 2iρkαω + (1 − ρ2)k2ω2, ζ = α − iωρk. (6.39)

∗Note that Eq. (6.31) is the backward Fokker-Planck equation while Eq. (6.34) is a forward equation
for x and t but not for σ.
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Furthermore, we obtain the unconditional characteristic function, ϕX(ω, t), if we

average over σ0 which we assume is in the stationary regime. We thus write

ϕX(ω, t) =

∫

ϕX(ω, t|σ0)pst(σ0)dσ0 (6.40)

with the stationary pdf given by Eq. (3.12):

pst(σ) =
1

√

πk2/α
exp

[

−α(σ − θ)2

k2

]

. (6.41)

Then from Eqs. (6.35) and (6.40)-(6.41), we get

ϕX(ω, t) =
1

√

1 + k2A/α
exp

[

−C +
B2k2/α − 4θB − 4θ2A

4(1 + k2A/α)

]

. (6.42)

Note that this solution has the right limit when volatility is constant and non-

random. Indeed, in such a case k = 0 and from Eqs. (6.36)-(6.38) and (6.42) we

have

ϕX(ω, t) = e−ω2θ2t/2, (6.43)

which is the cf of the zero-mean return when X(t) follows a one-dimensional dif-

fusive process with constant volatility σ = θ. Hence, solution (6.42) appears to be

consistent with the geometric Brownian motion model.

6.2. Convergence to the Gaussian distribution

Let us see that, as t → ∞, the marginal distribution (char2) approaches to the

Gaussian density. In other words, we will prove a Central Limit Theorem for the

model. The starting point of this analysis is Eq. (6.42) that as αt ≫ 1 can be

written in the following simpler form

ϕX(ω, t) ∼ exp

[

−
(

ω2α2θ2

η2
+ iωρk − α + η

)

t/2

]

, (αt ≫ 1). (6.44)

This is not a Gaussian distribution yet, since η defined by Eq. (6.39) is an irrational

function of ω. We have to assume an extra requirement. Specifically, we suppose

that
k

α
≪ 1, (6.45)

which means that volatility is weakly random. Indeed, k is the strength of the

volatility driving noise (the so-called volatility of volatility) while α tell us how

large is its deterministic drift (see Eq. (2.2)). Therefore the ratio k/α measures in

some way the degree of volatility randomness. Taking into account Eq. (6.45) we

write (cf. Eq. (6.39))

η = α

[

1 − iωρ
k

α
+

1

2
ω2 k2

α2
+ O

(

k3

α3

)]

.
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Substituting this into Eq. (6.44) yields

ϕX(ω, t) ∼ exp
{

−ω2
[

1 + ν2 + O(k/α)
]

θ2t/2
}

, (αt ≫ 1), (6.46)

where ν2 ≡ k2/2αθ2. The Gaussian density (6.46) proves the Central Limit Theo-

rem in our case.

6.3. Cumulants

Cumulants are defined as follows

κn ≡ (−i)n ∂n

∂ωn
ln[ϕX(ω, t)]

∣

∣

∣

∣

ω=0

,

and are very useful for deriving statistical properties of the model. For instance,

the second cumulant reads

κ2 = θ2
(

1 + ν2
)

t, (6.47)

which results to be the integrated variance of dX(t) (cf. Eq. (A.7)). The third and

fourth cumulants are respectively

κ3 = 3ρ
θ2k

α2

{

2
[

αt −
(

1 − e−αt
)]

+
ν2

2

[

2αt −
(

1 − e−2αt
)]

}

, (6.48)

and

κ4 = k2θ2 3

2α3

{

4
[

2αt + αtρ2
(

6 + 4e−αt
)

−
(

2 + 12ρ2
) (

1 − e−αt
)

+ρ2
(

1 − e−2αt
)

]

+ ν2
[

2αt + 8αtρ2
(

1 + e−2αt
)

−
(

1 − e−2αt
) (

1 + 8ρ2
)]

}

. (6.49)

In terms of cumulants kurtosis is given by

γ2 ≡ κ4

κ2
2

, (6.50)

and measures the tails of the distribution compared to the Gaussian distribution.

The kurtosis can be thus obtained using the second and fourth cumulants given by

Eqs. (6.47) and (6.49). The resulting expression is very similar to that of the fourth

cumulant (6.49) but with an extra constant factor. Its asymptotic limits are rather

simple to derive and read

γ2 ∼ 6ν2(ν2 + 2)

(ν2 + 1)2
(αt ≪ 1), (6.51)

and

γ2 ∼ 6ν2[ν2(1 + 4ρ2) + 4(1 + ρ2)]

(ν2 + 1)2
1

αt
(αt ≫ 1). (6.52)
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From Eq. (6.51), we observe that even dealing with an infinitesimal time there will

exist a non negligible kurtosis. Conversely, from Eq. (6.52) we see that kurtosis goes

to zero as time increases and that the convergence is slow going as 1/t. In addition,

we observe that for short times kurtosis does not contain the correlation coefficient

ρ but in the long run a non zero ρ magnifies the kurtosis of the distribution (cf.

Eqs. (6.51)-(6.52)).

Let us now turn our attention to skewness γ1 defined in terms of third and

second cumulant as

γ1 ≡ κ3

κ
3/2
2

(6.53)

and that quantifies the byass in the return distribution. A negative skewness in-

dicates that returns are more likely to decrease than to increase, while a positive

skewness indicates a higher probability of a return raising than a decline. Empirical

observations have found that financial markets have an slightly negative skewness 16.

Similarly to the kurtosis derivation, the skewness defined by Eq. (6.53) is ob-

tained with Eqs. (6.47)-(6.48) and the resulting expression is very similar to that of

Eq. (6.48) but with an extra constant factor. We limit ourselves to the asymptotic

cases

γ1 ∼ 3ρ
ν√

ν2 + 1

√
2αt (for αt ≪ 1), (6.54)

and

γ1 ∼ 6ρ
ν(ν2 + 2)

(ν2 + 1)3/2

1√
2αt

(for αt ≫ 1). (6.55)

From these equations we see that both at short and long times, skewness vanishes.

However, it decreases very slowly, more slowly than kurtosis (compare Eqs. (6.52)

and (6.55)). Finally, we note that skewness is proportional to ρ and, in consequence,

the sign of ρ not only determines the leverage correlation sign but also the skewness

sign. Empirical observations of leverage and skewness indicate that ρ must be

negative 16.

6.4. Tails

It is well established that distribution of prices have heavy tails. There exists several

empirical studies quantifying this fact (see for instance Mantegna and Stanley 19 or

Plerou etal. 20. Let us now study the existence of fat tails in our SV model. Recall

first that for long times, αt ≫ 1, the probability distribution is practically Gaussian

and there is no fat tail to look for. Therefore, we will search for heavy tails at small

to moderate times, i.e., when Central Limit Theorem is not applicable.

The tails of the distribution are determined by the shape of the density function

pX(x, t) when x is large. A well known fact from Fourier analysis is that the large

x behavior of pX(x, t) is given by the small ω behavior of its characteristic function

ϕX(ω, t) 21. Therefore, tails are derived from the characteristic function (6.42) by

only keeping the first orders in ω.
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When ω is small but time is not too long (i.e., αt ∼ 1) the expressions for

A(ω, t), B(ω, t) and C(ω, t) are approximately given by (cf. Eqs. (6.36)-(6.38))

A(ω, t) ∼ ω2

4α
(1 − e−2αt), B(ω, t) ∼ θω2

2α
(1 − e−αt)2,

and

C(ω, t) ∼ (ω2θ2 + iωρk − α)t/2 − (θ2/4α)[2(1 − e−αt)2 + 1 − e−2αt]ω2

+
1

2
ln[1 − iρktω + (k2/4α2)(2αt − 2α2t2ρ2 − 1 + e−2αt)ω2].

Thus from Eq. (6.42) we have

ϕX(ω, t) ∼ [1 + (k2/4α2)(1 − e−2αt)]−1/2 exp(−ω2θ2t/2 − iωρkt/2)

[1 − iρktω + (k2/4α2)(2αt − 2α2t2ρ2 − 1 + e−2αt)ω2]1/2
.

Again, taking into account that ω is small and t is moderate we get

ϕX(ω, t) ∼ 1

1 − 2ia(t)ω + b(t)ω2
, (ω → 0), (6.56)

where

a(t) ≡ ρkt/4, and b(t) ≡ k2t(2 − ρ2αt)/8α. (6.57)

The inverse Fourier transform for this asymptotic cf is

pX(x, t) ∼ 1
√

a(t)2 + b(t)
exp

[

− 1

b(t)

(

√

a(t)2 + b(t)|x| − a(t)x
)

]

, (|x| → ∞).

Hence the tails of the zero-mean return have an asymmetric exponential decay given

by

pX(x, t) ∼ 1
√

a(t)2 + b(t)
exp

[

− 1

b(t)

(

√

a(t)2 + b(t) − a(t)
)

x

]

(x → ∞),

(6.58)

and

pX(x, t) ∼ 1
√

a(t)2 + b(t)
exp

[

1

b(t)

(

√

a(t)2 + b(t) + a(t)
)

x

]

, (x → −∞).

(6.59)

Since a(t) = ρkt/4, we see that the sign of ρ will determine which is the heaviest

tail. When ρ is negative the fattest tail is the one representing losses and when

ρ > 0 the fattest tail corresponds to profits. If ρ = 0 there is no difference between

the two tails.

Finally, let us guess how the tails of price (not return) distribution are. We first

recall that the asymptotic expressions (6.58)-(6.59) refer to the marginal distribution

of X(t), that is, regardless the value of volatility at time t and after averaging over

the initial volatility. In order to obtain the asymptotic form of price distribution
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pS(S, t) out of the asymptotic form of pX(x, t) we must know what is the relation

between S(t) and X(t). For the general case this relation is given by Eq. (A.1) of

Appendix A and, since it corresponds to the two-dimensional case when no average

and marginal distribution have been performed, Eq. (A.1) involves X(t), S(t) and

σ(t). We conjecture that if time is not too large X(t) ∼ ln[S(t)/S0]. Therefore, for

the price distribution pS(S, t) we have the following power laws:

pS(S, t) ∼ 1

Sν−(t)
(S → 0), and pS(S, t) ∼ 1

Sν+(t)
(S → ∞) (6.60)

where

ν±(t) = 1 +
1

b(t)

[

±
√

a(t)2 + b(t) − a(t)
]

.

7. Conclusions

The stochastic volatility (SV) models are a possible way out to the observed in-

consistencies between the geometric Brownian model and real markets. The SV

models, as their name indicates, assume the original log-Brownian model but with

the volatility σ being random. From 1987 on, there have appeared several works

extending and refining stochastic volatility models but most of them are basically

designed to reproduce empirical option prices. We have assumed that the volatility

follows one of the simplest stochastic volatility models still showing mean reversion,

i.e., the Ornstein-Uhlenbeck process, but also allowing for correlations between the

random fluctuations of the price and volatility processes.

Recent efforts in the study of the empirical statistical properties of the spec-

ulative markets has led to a list of stylized facts that all proposed model should

accomplish. We have shown that the model is able to reproduce these facts. More

specifically, the volatility process is mean reverting and have found that it is able

to quantitatively reproduce the recently observed leverage effect. We have also es-

timated all parameters of the model and observed that a simulated path (using the

estimated parameters) is very similar to the sample path of the historical evolution

of the Dow-Jones daily index (1900-2000). Finally, we have derived the character-

istic function of the process, obtained its kurtosis and skewness, and observed the

power-law decay for the tails of the price distribution. The results herein derived

show that the SV models are good candidates for describing not only option prices

but market dynamics as well.

We finally point out two further extensions of our work. First, the resulting

characteristic function with all parameters already estimated can be used to derive

option prices. Second, the observed volatility is not definitively attached to any

specific model. There exists a large class of volatility processes and, since we now

have a systematic way of estimating parameters of the process, a deeper analysis

on which model gives a better explanation of the stylized facts can also be very

interesting. Other existent volatility models require a more involved mathematical
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analysis and it would be also interesting how far we can go using the methods

presented in this paper. These two points are under present investigation.
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Appendix A. The zero-mean return

The zero-mean return has been defined through its differential dX by Eq. (2.6). Let

us first prove that X(t) is explicitly given by

X(t) = ln[S(t)/S0] − µt − 1

2

∫ t

0

σ2(t′)dt′. (A.1)

Indeed, if we apply the Itô lemma to Eq. (A.1) and, as usual, keep orders smaller

than dt3/2 we have

dX(t) = dS/S +
1

2
(dS/S)2 − µdt − 1

2
σ2dt,

but dS/S = µdt + σdW1 and (dS/S)2 = σ2dt, then we obtain Eq. (2.7):

dX = σdW1,

and this proves the validity of Eq. (A.1).

We will now derive several averages concerning dX . We know from Eq. (3.19)

that

E [dX(t)] = 0. (A.2)

Again taking into account the independence of σ(t) and dW1(t) we write

E
[

dX2
]

= E
[

σ2
]

E
[

dW1(t)
2
]

, (A.3)

but E
[

dW 2
1

]

= dt, and using Eq. (3.10) we have

E
[

dX2
]

=
(

θ2 + k2/2α
)

dt. (A.4)

As to the fourth moment,

E
[

dX4
]

= E
[

σ4
]

E
[

dW 4
1

]

,

we note that E
[

dW 4
1

]

= 3E
[

dW 2
1

]2
= 3dt2 and we evaluate E

[

σ4
]

using the

stationary pdf (6.41). Hence

E
[

dX4
]

= 3
[

3(k2/2α)2 + 6(k2/2α)θ2 + θ4
]

dt2. (A.5)
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The variances of dX2 and dX are obtained from Eqs. (A.4) and (A.5) and read

Var[dX(t)] =
(

θ2 + k2/2α
)

dt, (A.6)

Var[dX(t)2] = 2
[

θ4 + 4
(

k2/2α
)2

+ 8
(

k2/2α
)

θ2
]

dt2. (A.7)

We finally derive the following correlation function:

E
[

dX(t + τ)2dX(t)
]

= E
[

σ(t)dW1(t)σ(t + τ)2dW1(t + τ)2
]

.

Note that all variables are Gaussian which allows us to decompose the rhs of this

equation into average pairs, taking also into account that dW1(t + τ)2 = dt we can

write

E
[

dX(t + τ)2dX(t)
]

=
{

2E [σ(t)σ(t + τ)] E [σ(t + τ)dW1(t)]

+E
[

σ(t + τ)2
]

E [σ(t)dW1(t)]
}

dt

Combining this with Eqs. (3.17) and (3.18), we get

E
[

dX(t + τ)2dX(t)
]

=

{

2ρkE [σ(t)σ(t + τ)] e−ατdt2 if τ > 0,
0 if τ < 0;

and the volatility correlation (3.11) allows us to write

E
[

dX(t + τ)2dX(t)
]

=

{

2ρk
[

θ2 + (k2/2α)e−ατ
]

e−ατdt2 if τ > 0,

0 if τ < 0.
(A.8)

Appendix B. The characteristic function of return

In this Appendix we will obtain the expression given by Eq. (6.35) for the marginal

characteristic function ϕX(ω, t|σ0) of the two-dimensional diffusion process (X, σ)

whose joint density p2(x, σ, t|x0, σ0, t0) is the solution to the final problem posed by

Eqs. (6.31)-(6.32).

The marginal characteristic function (cf) of process X(t),

ϕX(ω, t|σ0) =

∫ ∞

−∞

eiωxpX(x, t|σ0)dx,

allows us to write Eq. (6.34) in the following simpler form:

∂ϕX

∂t
=

1

2
k2 ∂2ϕX

∂σ2
0

+ [iωρkσ0 − α(σ0 − θ)]
∂ϕX

∂σ0
− 1

2
σ2

0ω2ϕX . (B.1)

The initial condition is

ϕX(ω, 0|σ0) = 1. (B.2)
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By direct inspection one can easily see that the solution to problem (B.1)-(B.2)

is

ϕX(ω, t|σ0) = exp[−A(ω, t)σ2
0 − B(ω, t)σ0 − C(ω, t)] (B.3)

where functions A(ω, t), B(ω, t) and C(ω, t) are the solution of the following set of

ordinary differential equations

Ȧ = −2k2A2 − 2(α − iωρk)A + ω2/2 (B.4)

Ḃ = −
[

2k2A + (α − iωρk)
]

B + 2αθA (B.5)

Ċ = k2(A − B2/2) + αθB, (B.6)

with initial conditions

A(ω, 0) = B(ω, 0) = C(ω, 0) = 0. (B.7)

Note that Eq. (B.5) is a linear equation and that the rhs of Eq. (B.6) does not

contain C(t). Therefore, their formal solutions are straightforward and read

B(t) = 2αθ

∫ t

0

A(t′) exp

[

−(α − iωρk)(t − t′) − 2k2

∫ t

t′
A(t′′)dt′′

]

dt′, (B.8)

C(t) = k2

∫ t

0

[

A(t′) − B2(t′)/2
]

dt′ + αθ

∫ t

0

B(t′)dt′. (B.9)

On the other hand Eq. (B.4) is more involved since it is a Ricatti equation. However,

the definition of a new dependent variable

A =
ẏ

2k2y
(B.10)

turns Eq. (B.4) into the following linear second-order equation with constant coef-

ficients:

ÿ + 2(α − iωρk)ẏ − k2ω2y = 0.

The solution to this equation is

y(t) = C1e
λ+t + C2e

λ−t,

where C1,2 are arbitrary constants and

λ± = α − iωρk ±
√

(α − iωρk)2 + k2ω2.

Substituting this into Eq. (B.10) yields

A(t) =
λ+eλ+t + λ−(C2/C1)e

λ−t

2k2[eλ+t + (C2/C1)eλ−t]
.

Now the initial condition A(0) = 0 gives C2/C1 = −λ+/λ− and the substitution of

λ± allows us to write A(t) in the form given by Eq. (6.36). Finally the substitution

of Eq. (6.36) into Eqs. (B.8)-(B.9) results in Eqs. (6.37)-(6.38).
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