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A winning strategy is developed for the nine to one side bet on a
Banker natural nine. Let n be the number of cards that remain for
play. Let ¢ be the number of nines that remain for play. If p(n, t) is the
probability of a natural nine when n and ¢ are given, then p(n, t) is
greater than 0.1 frequently enough to make the counting of n and ¢ the
basis for a practical winning strategy. The Kelly criterion (play to
maximize the expected value of the log of capital) is used to determine
bet sizes for favorable situations. Similar strategies are developed for
the side bets on Banker natural eight, Player natural nine, and Player
natural eight. The relationships between the four side bets are analyzed.
It is shown that the main (roughly 1:1) bets on Banker and Player
occasionally favor the player. There are theoretical favorable strategies
but none exists which is currently practical.

1. INTRODUCTION

HE games of Baccarat and Chemin de Fer are well known gambling games
Tplayed for high stakes in several parts of the world. Baccarat is said to be
a card game of Italian origin that was introduced into France about 1490 A.D.
Two forms of the game developed. One form was called Baccarat and the other
was called Chemin de Fer. The most basic difference between these two games
is simply that three hands are dealt in Baccarat (called Baccarat en Banque in
England) and two hands are dealt in Chemin de Fer (called Baccarat-Chemin
de Fer in England and in Nevada). The cards Ace through nine are each worth
their face value and the cards Ten, Jack, Queen and King are each worth zero
points. A hand is evaluated as the sum modulo ten of its cards, i.e. only the last
digit of the total is counted. The object of the game is to be as close to eight or
nine as possible with two cards, or as close to nine as possible with at most
three cards if one does not have eight or nine on his first two cards. Then the
high hand wins.

The games of Baccarat and Chemin de Fer became popular in public casinos
all over Europe, as well as in private games, about 1830. At the present time
one or both of these games are well known in London, southern France, the
Riviera, Germany and Nevada. A form of Chemin de Fer, which we shall
call Nevada Baccarat, has been played in a few Nevada casinos since 1958.

The rules, structure and format of the three games have strong similarities.
We studied Nevada Baccarat most intensively because the casinos where it

* This research was supported in part by Grant NSF-G 25058, Grant AF-AFOSR 457-63, and by the Atomic
Energy Commission.
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was played were readily accessible. Our techniques can be carried over to the
other forms of Baccarat and Chemin de Fer.

We were originally motivated by the observation that Baccarat and Chemin
de Fer have several points of resemblance to the game of Blackjack, or Twenty-
One. The fact that practical winning strategies for Twenty-One have been re-
cently discovered suggested that there might also be practical winning
strategies for Baccarat and Chemin de Fer [14], [15], [16]. In contrast to the
situation in Twenty-One, we found that there are no current practical winning
strategies for the main part of the game, i.e., for the money Banker and
Player bets.*

During this work we learned that the Nevada version of the game sometimes
had certain associated side bets. In the greater part of this paper we show that
there are practical winning strategies for these side bets and we develop the
details of a strategy based on the Kelly criterion.

Our favorable strategies were successfully exploited by players. This forced
the casinos to remove the (once profitable) side bets from their layouts. We will
talk in the present tense about these side bets even though, as of this writing,
they are out of favor. There is a picture of the former layout at the Sands,
complete with side bets [13, p. 419].

2. RULES AND PROCEDURES

We now describe the game of Nevada Baccarat. To begin the game, eight
decks of cards are shuffled and a joker is placed face up near the end. The cards
are then put into a wooden dealing box called a shoe. The first card is exposed,
and its value is noted, face cards being counted as tens. Then this number of
cards is discarded, or “burned.”

The table has twelve seats, occupied by an assortment of customers and
shills. A shill is a house employee who bets money and pretends to be a player
in order to attract customers or stimulate play. We refer to them indiscrimi-
nately as “players.” There are two principal bets, called “Banker” and
“Players.” Any player may make either of these bets before the beginning of
any round of play, or “coup.”

To begin the evening’s play, two of the players are singled out. One is termed
The Banker and the other is termed The Player. The seats are numbered
counterclockwise from one to twelve. Player number one is initially The Banker,
unless he refuses. In this case the opportunity passes counterclockwise around
the table until someone accepts. The Player is generally chosen to be that
player, other than The Banker, who has the largest bet on the Player. We have
not noticed an occasion when there were no bets on The Player. When we
played, there were shills in the game and they generally bet on The Player
(except when acting as The Banker, when they generally bet on The Banker).

The Banker retains the shoe and deals as long as the bet “Banker” (which
we also refer to as a bet on The Banker) does not lose. When the bet “Players”
(which we also refer to as a bet on The Player) wins, the shoe moves to the

* Some of the strategies which win theoretically, but currently seem impractical, may be practical when tech-
nology has advanced further. Further, we only rule out strategies based on card counting. Strategies based upon the
analysis of card shuffling could conceivably yield practical winning strategies [17, Sec. 3, Ch. 4}.
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player on the right. This player now becomes The Banker. If the coup is a tie,
the players are allowed to alter their bets in any manner they wish. The same
Banker then deals another coup.

To begin a coup, The Banker and The Player are dealt two cards each.
As we noted above, the cards Ace through nine are each worth their face value
and tens and face cards are each worth zero points. Only the last digit inthe
total is counted. '

After The Banker and The Player each receive two cards, the croupier faces
their hands. If either two-card total equals 8 or 9 (termed a natural 8 or a
natural 9, as the case may be), all bets are settled at once.

If neither The Player nor The Banker have a natural, The Player and The
Banker then draw or stand according to the set of rules in Table 1.

The high hand wins. If the hands are equal, there is a tie and no money
changes hands. Players are then free to change their bets in any desired manner.
If the coup being played is complete when the joker is reached, the shoe ends
and the cards are reshuffled. Otherwise the coup is first played out to comple-
tion. Then the shoe ends and the cards are reshuffled. However, the casino may
reshuffle the cards at any time between coups.

3. THE MAIN BETS

Two main bets against the house can be made. One can bet on either The
Banker or The Player. Winning bets on The Player are paid at even money.
Winning bets on The Banker are paid 0.95 of the amount bet. The five per cent
tax which is imposed on what otherwise would have been an even-money pay-
off is called “vigorish.” For eight complete decks, the probability that The
Player wins is 0.446247, the probability that The Banker wins is 0.458597, and
the probability of a tie is 0.095156.

The basic idea of the calculation of these numbers is to consider all possible
distinct 6-card sequences. The outcome for each sequence is computed and the
corresponding probability of that sequence is computed and accumulated in

TABLE 1. NEVADA BACCARAT RULES

Player having
0-5 draws a card
6-7 stands
8-9 turns cards over
Banker having draws when does not draw when
The Player draws The Player draws
0 none, 0-9
1 none, 0-9
2 none, 0-9
3 none, 0-7, 9 8
4 none, 2-7 0,189
5 none, 4-7 0-3, 8,9
6 6, 7 none, 0-5, 8, 9
7 stands stands
8 turns cards over turns cards over
9 turns cards over turns cards over
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the appropriate register. Numerous short cuts, which simplify and abbreviate
the calculation, are introduced. For example, only those sequences where the
rules are not symmetric need to be considered. Also, sequences where, say,
The Banker’s (or The Player’s) first two cards are x, y(x><y) and y, = need not
be considered separately.

The house advantage (we use advantage as a synonym for mathematical
expectation) over The Player is 1.2351 per cent. The house advantage over
The Banker is 0.458597 X 5 per cent —1.2351 per cent or 1.0579 per cent, where
2.2930 per cent is the effective house tax on The Banker’s winnings. If ties are
not counted as trials, then the figures for house advantage should be multiplied
by 1/0.904844, which gives a house advantage per bet that is not a tie, over
The Banker of 1.1692 per cent and over The Player of 1.3650 per cent. The
effective house tax on The Banker in this situation is 2.5341 per cent.

Figures for the house advantage have been given by Scarne [13, p. 427],
but seem, upon comparison with our correct figures, to be computed as though
ties are discounted but the assertion is made that the figures apply to “. .. every
hundred dealt hands in the long run ... ”. For reference, they are a 1.34
per cent advantage of The Banker over The Player (compares with our
1.2351 per cent and 1.3650 per cent figures), a 2.53 per cent charge on The
Banker’s winnings, (compares with our 2.2930 per cent and 2.5341 per cent),
and a house advantage of 1.34 per cent over The Player, and 1.19 per cent over
The Banker. Thus, #f the confusion over ties is clarified, the figures given by
Scarne are quite accurate for the case where ties are not included in counting
the number of trials.

We attempted to determine whether or not the abnormal compositions of
the shoe, which arise as successive coups are dealt, give rise to fluctuations in
the expectations of The Banker and The Player bets which are sufficient to
overcome the house edge. It turns out that this occasionally happens but the
fluctuations are not large enough nor frequent enough to be the basis of a
practical winning strategy. This was determined in two ways. First, we varied
the quantity of cards of a single numerical value. The results were negative.

We next inquired as to whether, if one were able to analyze small n situations
perfectly (e.g. the player might receive radioed instructions from a computer),
there were appreciable player advantages on either bet a significant part of
the time. We selected 29 sets of 13 cards each, each set drawn randomly from
eight complete decks. There were small positive expectations in only two in-
stances out of 58. Once The Player had a 3.29, edge and once The Banker had
a 0.19%, edge.

We next proved, by arguments too lengthy and intricate to give here, that
the probability distributions describing the conditional expectations of The
Banker and The Player spread out as the number n of unplayed cards decreases
[17, Sec. 2, Ch. 2]. Thus there are fewer advantageous bets of each type, and
they are less advantageous, as n increases above 13. The converse occurs as n
decreases below 13.

The observed practical minimum n ranged from 8 to 17 in one casino and
from 20 up in another. The theoretical minimum, when no cards are burned,
is n=6. Thus the results for n=13 seem to conclusively demonstrate that no
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practical winning strategy is possible for the Nevada game, even with a com-
puting machine playing a perfect game. Further considerations [17, Sec. 2,
Ch. 2] show that a computing machine playing a perfect game might yield a
practical winning strategy in those continental games where The Banker’s
strategy is completely optional. The situation is marginal.

4. THE SIDE BETS

The game of Nevada Baccarat sometimes has certain associated side bets.
One can bet that The Banker has a natural nine. One can also bet that The
Banker has a natural eight. These same bets can sometimes also be made with
respect to The Player. The side bets each pay 9 to 1 (equivalently, 10 for 1).
For eight complete decks, the probability of a natural nine is 0.09490, a house
advantage of 5.10 per cent. For eight complete decks, the probability of a
natural eight is 0.09453, a house advantage of 5.47 per cent. These values were
computed from equations (1) and (13) respectively. For a bet equally divided
between the two naturals, the house advantage is 5.29 per cent. The corre-
sponding figures given by Scarne are erroneous [13, p. 427].

5. THE ADVANTAGEOUS SITUATIONS
Let n be the number of cards in the shoe that thus far have not been used in
play. Let ¢ denote the number of these n cards with the value nine. Assume
that the n—1 other cards have been selected at random from the 384 non-nines
which were originally in the complete eight decks. Let two cards d; and d;
be drawn from the n cards. By considering cases, we find the probability that
The Banker’s first two dealt cards total nine. The side bet has positive expecta-
tion if and only if this probability exceeds 0.1.
(a) d1=9,d2=0
Prob(d: = 9) = t/n. Prob(d; = 0] d; = 9) = (n — £)/(3(n — 1)).
If d, = 9 and d; = 0 then Prob(d; + d; = 9) = 1.
Prob(di = 9and d; = 0and dy + d; = 9) = ({(n — £))/(Bn (n — 1)).
(b) d] =0andd2= 9
Prob(di = 0and d; = 9and di + d2 = 9) = (t(n — £))/(Bn(n — 1))
by reasoning similar to that for (a).
(C) dl?ég,dz?fg
Prob(d; # 9) = (n — t)/n. Prob(d, = 9|d1 % 9) = (n —t — 1)/(n — 1)
If di % 9 and d; # 9 then Prob(d; + d» = 9) = (8(32)(32))/(384)(383)).
Prob(d; £ 9 and ds £ 9 and di + d2 = 9)
= (8(32)(32)(m — t)(n — t — 1)/(384(383))n(n — 1)).

We combine the three cases above and find that the probability of obtaining
a total of nine by drawing two cards is:

P = (2(n — £)(32n + 351t — 32))/(1149n(n — 1)). (1)
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For N decks, the corresponding formula turns out to be

Pui= 2(n — {)(ANn + 44Nt — 4N — 9))/Gnn — @8N — 1)).  (2)

We find the result for the infinite deck case either by taking the limit of this
expression as N— and r=n/t is held fixed, or by an easy direct calculation.
The result is

P,=(1-1/rQ + 11/7)/18. (3)
Division shows that
Poi/Pr =14 ((n — (n — 1) + (12)351¢)/(383(n — 1)(n + 11t)). (4)

Thus P,,.> P,. This is an important result for it shows that a strategy based
on assuming an infinite deck will be conservative. Thus we can design a win-
ning strategy based on the much simpler infinite deck calculations. The
equality also shows that the approximation is “good.” The corresponding re-
sult for N decks is

Pro/Pr =14 ((n = t)(n — 1)
+ 12t(44N — 1)) /(48N — 1)(n — 1)(n + 11¢)). 5)

We next determine how the favorable side bets are distributed. Given n
cards, the probability that ¢ of these cards are nines is given by

an, = C(32;8)C(384; n — t)/C(416;n) where C(r;s) isr!/(s!(r — 8)!). (6)
This yields the recursion formulas

n-1,(n(385 — n + 1)) /((n — £)(417 — n)) @)
Gn,e = Gn,1((0 — £+ 1)(33 — 1))/ (1(384 — n + 1)). 8)

Let N’ be the total number of cards which are not used during play, i.e.,
N’ is the sum of the numbers of unseen burned cards and the cards left in the
shoe when the house decides to shuffle. Then 416 — N’ cards are actually dealt.
Thus the number n’, of cards which as yet have not been used at some instant
during play of a shoe, ranges from 416 to N'41.

Either 4, 5 or 6 cards are used during a coup. Thus the number n of cards,
which as yet have not been used just before the play of some coup begins in a
shoe, if one of the numbers 416, 412 to 410, 408 to (N’'+4) and all these values
can generally be attained. It is n which is significant for our purposes. We
define N =(N'+4), the least value which n can attain during the play of the
shoe. Of course N generally varies from one run through the eight decks (also
termed a shoe) to another.

We assume that the various values of n between 416 and N occur with equal
probability. This is only an approximation to what actually occurs but it ap-
pears to introduce negligible errors in our calculations. With this assumption,
the probability that the first card which is drawn in a given coup during the
play of a shoe is drawn from » cards, is 1/(417 —N). Therefore, the probability

On,t
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that the draw of the first card to a hand is from n cards, ¢ of which are nines, is
given to good approximation by:

Cn,t=0n,/(417—N), where we assume that n ranges uniformly over all
values from 416 down through N. Complete tables of ¢,,; were obtained from
this relation, the recursion formulas for a,,;, and a high speed computer. The
values of p, . for all possible n and ¢ were likewise determined via the computer.
It turns out that when N is fairly small, say 20 or 30, favorable side bets can
be placed about 20 per cent of the time. The advantage on (mathematical ex-
pectation of) these side bets runs as high as 89 per cent when N is 20.

6. THE GAMBLING SYSTEM

Consider a coin toss game in which p, the probability of our winning, is
greater than . Suppose we have V, units of capital initially and V', units be-
fore trial ¢. Since p>1, the expectation is positive so we might bet to maximize
our expectation. But this means we should bet our entire current capital of V,
units at each trial. Consequently, with probability 1 we can expect to be ruined.

Alternately we might bet 1 unit at each trial. This generally makes the ruin
probability small compared with many other conceivable betting schemes.
However, one’s capital grows slowly.

An interesting compromise is explored by Kelly [8]. He proposes (the Kelly
criterion) to maximize the expectation of the logarithm of the player’s capital.
In his work, he assumes that money is infinitely divisible and that the player
bets a fixed fraction f of his capital at each trial. It turns out that there is a
fraction f* with the desirable property that if two players compete, one using
f and the other f*, the probability that V,(f*) > V,(f) tends to 1 as ¢ tends to «.

In practice, the system of Kelly must be modified to fit reality. Because
integral bets only are allowed, one can generally only approximate the optimal
f*V called for by Kelly. Further, when V' is small, f*V, may be much less than
one unit and a reasonable approximation is no longer possible.

Now we develop the Kelly ideas for our specific problem. Let p.>1/10,
1<k<K, be the conditional probability that the natural nine will win, given
an event k that is known to occur with probability c¢,. When & occurs, suppose
the player bets a fraction f; of his capital. If ¢ bets are made there are ¢ bets
of type k with w, wins and I losses, for 1 <k < K (there are no ties when betting
on the side bets so w41 =1{). Denote the player’s capital after ¢ bets by V,,
and his initial capital by V,. Then, since the side bet pays nine to one,

K
Vi=Vo[] @+ 9w+ — fi)b.

k=1

Define the exponential rate of growth, G, by
G = lim ((log: (V+/V0)/1). )

t—

Note that 1/G will be the mean number of bets required to double the initial
capital Vo. The Kelly criterion is to maximize G. If we let dG/dfr,=0 and solve
for fi, we find that

fe = (10px — 1)/9. (10)
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Hence

K

Guax = 2, ci(pilogz (10ps) + (1 — p) logs (10(1 — pi)/9)). (11)

k=1

7. THE WINNING STRATEGY

All the formulas needed to construct the strategy are now available. Given
that n cards remain, ¢ of which are nines, and a corresponding probability
Px,: of winning, certain values of p, ; satisfy p,..>1/10. This is a conditional
probability, given an event that occurs with probability c,,. For those pairs
(n, t) such that p,,.>1/10, the optimal fraction is

fn,t = (lopn,t - 1)/9' (12)

If p.,:<1/10, let fa,. =0, corresponding to no bet. Thus a table was computed
telling the player for each possible pair (n, {) what fraction of his initial capital
should be wagered. The table is too large to be practical for actual betting.
However, equation (4) suggests, and examination of the computed values of
fn,¢ verifies, that over nearly all of the range of interest, f.,,;, is approximately
equal to fa,.., if n1/ti=ns/ts. Therefore the betting tables can be reduced to a
very compact size. The use of this strategy in actual play will be described
later.

If N=10, the mean number of hours necessary to double initial capital
(Banker natural nine bet only) is 45. If N =35, the mean number of hours is
96. We will see that these figures can be divided by 2 and 4 respectively after
the other side bets have been considered.

8. THE PROBLEM OF GAMBLER’S RUIN

Ideally, we would like to obtain a practical algorithm for computing the
probability of ruin, starting with a given capital and a given set of casino rules,
when betting The Banker natural nine in Nevada Baccarat. This appears to
be an extremely complicated and lengthy problem. However, we will obtain
upper and lower bounds for the ruin probabilities in a class of simpler situa-
tions.

Recall that p.>1/10, 1<k<K, was a conditional probability, given an
event that occurs with probability ¢, and that

K
Ve=Vo Il @ + 9 (1 — fi)=.
k=1
Let us consider one of these situations for a fixed value of k. Since k is fixed,
we will use the notation

Ve= Vol + 9)*(1 - )

where w is the number of wins and 1 is the number of losses, in ¢ trials. The
letter f represents the optimal fraction determined by the Kelly System. We
will obtain upper and lower bounds for the ruin probabilities in such situations.

If bets of arbitrary size were allowed, the player would never be ruined,
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provided he avoided ever betting his entire current capital. (In this case we
would redefine ruin to mean that the player’s capital tends to zero with prob-
ability one. Ruin is then possible once again.) In the more realistic situation
where there is a minimum allowable bet m, and the player’s capital becomes
Vi<m/f, it will no longer be possible for the player to follow the Kelly strategy.
In this case we say the player is ruined, although this differs slightly from the
usual definition and from the above redefinition.

In what follows, we will assume that any size bet larger than m is allowable.
This does not correspond to reality, because the casinos only allow bets of
multiples of m, up to a certain maximum. The assumption enlarges the set of
permissible strategies. It permits a better strategy “fit” than is obtainable in
reality. This tends to increase the computed figure for the exponential rate of
growth above its true value. We have shown that the errors introduced are
small.

Ruin occurs when V,<m/f, or taking m=1, when V,<1/f. This ruin occurs
when

Vol + 9)»(1 = Nt < 1/f
or when
wlog (1 + 9f) + llog (1 — f) < — log (Vof),

which we write as

wey — leg < cs.

This is equivalent to absorption to the left of the barrier c;= —log,V,f, in a
one-dimensional random walk in which the particle starts at the origin and at
each trial either moves left co=1logi(1—f) units with probability ¢ or moves
right ¢1=1og,(14f) units with probability p. The formally different but similar
problem where absorption occurs at the barrier, has a well-known solution in
the event that ¢; and ¢, are integers,* and therefore in the event ¢, and ¢, are
rationals.

‘We note the problems of absorption at the barrier and absorption fo the left of
the barrier are equivalent when c¢,/c; is rational. For the particle’s allowed posi-
tions z are a “lattice” of points on the real line, with a minimum spacing. (if
c2/c1=a/b where a and b are integers and have no common factors, then the
particle is limited to the set x=/kc1/b where k=0, +1, +£2, - - - .) If ¢; is not
one of these points, absorption at c; and absorption to the left of ¢; mean the
same thing. If ¢; is one of these points, consider the next such point z to the
left. Then the problem of absorption to the left of ¢; is the same as the problem
of absorption at (z-+c;)/2.

In general, ¢, and ¢, will not be rational. However, the problem reduces to the
well-known case if we merely require that r=cy/c; to be rational, for the in-
equality ciW,—c.L, <cs is equivalent to W,—rL, <cs/c; and if r=a/b, where
a and b are integers and we may assume a/b is in lowest terms, we have bW,
—aL,<b(cs/c1). Since our particle takes integral steps, this is equivalent to
absorption at ¢, where c is the greatest integer less than b(cs/cy).

* If ¢; is not an integer, absorption at c; is the same as absorption at [c.], the greatest integer less than c;.
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The condition cz/ci=a/b is equivalent to —logi(1—7)/logi(14f)=a/b or
(1+)*(1—f)*=1 where a>b>0. It is easy to show that there is a unique
fo>0 which satisfies this equation, and that f, increases from 0 to 1 as a/b in-
creases from 1 to «. For example, when ¢/b=0.2/0.1=2, we must find the
positive root of (14+f)2(1—f)=1. It is fo=(—1+4++/5)/2=0.618.

The case where c2/ci=a/b is useful for the construction of examples. How-
ever, the numbers ¢, and ¢, arise from f, which is given in advance, and they
are usually such that c¢z/c; is not rational. To solve this general case, we ap-
proximate by solutions of cases where c¢;/c; is rational. If the particle takes
steps of size 1 to the right with probability p and steps of size r;=a;/b;>c:/c1
to the left with probability ¢, then clearly the probability U; of absorption be-
low cs/c1 is larger than the true value. Similarly, if 1<s;=e;/f;<cs/c1, where
e; and f; are positive integers, and the steps to the left are instead of this size,
the probability L; of absorption is smaller than the true value. Thus, if 4 is
the probability of absorption in the original problem, L; <A <U;. We choose
sequences {r;} and {s:} of rationals, such that r; | cs/c; and s; ] cs/cs. Then
as 7 increases, U; | U>A and L; T L<A.

We observe that L=A. To see this, imagine the successive locations of our
particle plotted as points (7, ) in the N — X plane, where n is the number of
trials and x is the corresponding location. Then each particular occurrence of
the random walk is plotted as a polygonal line in the plane. Then, given ¢>0
there is an N (A, €) such that the probability of ruin after time N (4, ¢) for the
original random walk @ giving rise to A is less than . Now consider a random
walk S; which provides one of the L; approximations to L. As 7 increases, the
polygonal paths for a given S; move down towards the corresponding polyg-
onal paths for @. There are only a finite number of distinct polygonal paths
for @ and for a given S; if we restrict consideration to n<N (4, €). Consider
those vertices (if any) which lie in the absorbing region. Since the absorbing
region is an open lower half-plane, there is a positive minimum distance d
between these vertices and the boundary of the absorbing barrier. For all
sufficiently large 7, we can guarantee that when n<N (4, ¢) the paths for S;
are within d/2 of the corresponding paths for . Thus ruin under @ and under
S; always occurs “simultaneously” when n<N (4, €. Since both ruin prob-
abilities are less than e for n >N (4, ¢€), we see that A —L;<e. Since e is arbi-
trary L; T A.

We observe that U=A4 “usually” but that this is not always the case. We
assume that co/cy is irrational, since the case of ¢y/c1 rational is solved, as re-
marked earlier. It follows from the fact that c,/c; is irrational that the positions
occupied by the particle, or equivalently, the vertices of the polygonal paths,
get arbitrarily close to the barrier boundary z=c;3/c;.

Case 1: The barrier boundary is not a point of occupancy for the particle.
In this case U=A4. To see this, consider the random walk R, giving rise to U;.
Given €>0 choose N (R, € such that the probability of ruin under Uj is less
than ¢ when n>N (R1, €). From our hypothesis there is a minimum positive
distance d to the barrier from those A-vertices lying above the barrier and
having n <N (R;, €). For ¢ sufficiently large, we can ensure that the R;-vertices
are within d/2 of the corresponding A-vertices. Hence for such ¢, and n <N (R,
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€), ruin is “simultaneous” for E; and Q. But for n> N (R, €), the probability of
ruin for @ is less than that for R; which is less than that for B; which is less
than e. Hence U;— 4 <e.

Case 2: The barrier boundary is a point of occupancy for the particle. In
this case U>A. Under Q, the particle has a positive probability p of being
on the barrier boundary. This is not ruin. However, the polygonal paths for
U; lie strictly below those for . Hence the corresponding paths for U, lead
to ruin. Thus U—4>p>0. It is easy to see that U—A =p>0.

The barrier boundary is a point of occupancy for the particle under @ if and
only if there are integers m and n such that mci+mnc.=cs;. Hence this is equiv-
alent to U> A.

We approximated the probability A of ruin in the associated random walk,
by determining bounds for U; and L; and hence for A [5, Ch. 14, Sec. 8]. We
computed extensive tables of these values. For example, if V, is 200 minimum
units and f assumes the values .006, .036 and .093, then we have .30 <A <.83,
04<A<.14 and .01<A4<.05 respectively. If V4 is 1000 minimum units and
f assumes the values .006, .036 and .093, then we have .06<A<.17,0<A4<.03
and 0< 4 <.01 respectively.

9. THE EFFECTS OF APPROXIMATING THE OPTIMAL FIXED FRACTION

We earlier pointed out that in actual play only multiples of the minimum
bet are allowed. Therefore it is in general not possible to bet precisely the
quantity V,f*. It turns out that the losses in G due to these necessary approxi-
mations to Vf* are not serious. Extensive computation shows that in the case
of bets on Banker natural nine, when the fraction f of V, actually bet satisfies
0.5/*<f<1.5f* then @ satisfies 0.75Gnax <G over the range of interest 0 <f*
<0.13.

10. THE BANKER NATURAL EIGHT SIDE BET

A treatment, similar to that for The Banker natural nine, could be applied
to The Banker natural eight side bet, yielding a strategy for this side bet.
However, we will show that the strategy for The Banker natural eight is, for
all practical purposes, identical to that for The Banker natural nine. The
only difference is that one counts the number of eights rather than the number
of nines.

The only formula changed is the one for p,,:. To distinguish, the notations
v, and pj, will be used.

By considering cases as in section 5, we can obtain for The Banker natural
eight bet a set of equations corresponding to those already obtained for The
Banker natural nine.

The probability of obtaining a total of eight by drawing two cards (from
eight well shuffled decks) is

Poy = ((n — £)(127n + 1405¢ — 127))/(2298n(n — 1)). (13)
It follows from (1) and (13) that

| Dme = pme| < 1/2298. (14)
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As in (10), we have fi,= (10p;,—1)/9, where ¢=8, 9. From this we see that if
IP:,t - p:,:] < € then

lf:,t — f:tl < 10¢/9. (15)
From (14) we have e=1/2298 so (15) yields

| foe — for] < 10/20682 < 0.0005.

Thus betting tables for The Banker natural eight bet agree, to a high approxi-
mation, with betting tables for The Banker natural nine bet.

Some indication of the relation between the natural eight and natural
nine bets should be given. Calculations show that, over the range of practical
importance, if the total number n, of cards and the number s, of eights are
held fixed, then the probability of a natural eight increases monotonely as the
number ?, of nines is increased. However, the probability of a natural eight does
not rise to the “normal” amount until n,/¢ has decreased to somewhere in the
neighborhood of 9.0.

Similarly, it turns out that if the deck is rich in eights, the probability of a
natural nine is decreased, compared with the typical distribution for the non-
nine cards.

If one is placing bets on both The Banker natural nine and The Banker na-
tural eight, perhaps these facts should be considered. However, for a typical
N, say N =40, simultaneous bets on both natural nine and natural eight are
warranted only about a quarter of the time that bets on at least one natural
are called for. Further, in the case of simultaneous bets, the amounts bet on
each are generally rather different, so that one of them might be thought of as
dominant. Therefore we do not feel that increased complication of the strategy
is justified.

11. THE PLAYER NATURAL NINE SIDE BET

Now consider the bet that the player has a total of nine on his first two
cards. Again let p;,>1/10, 1<k<K, be the conditional probability that The
Player natural nine will win, given an event k that is known to occur with
probability ¢;,. When k occurs, suppose the player bets a fraction fi of his
capital that The Player will receive a natural nine, and also bets a fraction fi
of his capital that The Banker will receive a natural nine. We consider both
these wagers as one bet by the player. We show that approximately the same
fraction should be used separately on each of the two bets when both are made
simultaneously, as is used when only the single bet on The Banker’s total is
made.

If ¢ bets are made, there are ¢, bets of type k& with w} wins and [ losses for
The Player’s hand, and w} wins and [} losses for The Banker’s hand, where
1<k<K. Denote the player’s capital after ¢ bets by V, and his initial capital
by Vo.

Let the number of times in ¢ trials such that a bet of type k is made and both
The Player and The Banker have a natural nine be wi(b, p), such that The
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Banker has a natural nine and The Player does not be wi(b, p’), such that The
Banker does not have a natural nine and The Player does be wi(b’, p), and such
that neither has a natural nine be wi(b’, p'). Let pi(b, p) =1lim..,, wi(b, p)/t and
define pi(b, p'), pc(b’, p) and pi(b’, p) similarly. Let

pr = lim (w:/tk) and ¢, = lim (lZ/tk).

t— 0 t— 0

These limits exist with probability {. Since the cards are assumed to have been
shuffled randomly, by symmetry px(b, p") =p:(b’, p) and

e = lim (we/t), g0 = lim (Go/t).

1— 0 l1— 0

It is intuitively clear that whether The Banker gets a natural nine is generally
not independent of whether The Player does. However, for simplicity, we as-
sume independence in the next derivation.

Then we have

K
V= Vo [] (1 + 18f) whobriea(1 4 8f,) whibr(1  gf,) obri(1 — af,) Fib ey
k=1

Since

G = lim ((logs (V./Vo)/b),

1—

we have

K
G =Y ci(pelogs (1 + 18f%) + 2puge loga (1 4 87 + ge logs (1 — 2fi)).

k=1

If we set 0G?f,=0 and gx=1—px, we have

144f; + 2(50p; — 90px + 13)fs — (10pe — 1) = 0

By applying the quadratic formula and selecting the positive root we obtain

Xbp

Je

Recall that for The Banker natural nine only, the optimal fraction is

f* = (10pe — 1)/9.

= (1/144)(— (50p; — 90px -+ 13) + 5(100ps — 360p; + 376pp — 36p: -+ 1)172).

Calculations show that
fXer < %0 for 0 < f* < 0.13. Also
(f*b — f*ooy /f*0 < 002 for 0 < f* < 0.07,
(f*b — froe) /f*0 < 005 for 0.07 < f*b < 0.13.

Thus, the f*» obtained by assuming independence of the events “banker
natural nine” and “player natural nine” agree to a good approximation, over
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the range of practical interest, with the values of f*>. The question remains as
to whether the assumption of independence gives f**» values which closely ap-
proximate the true values of f**», Tedious computations, which we omit here,
show that they in fact do over the range of practical interest.

Thus, the joint bet may safely be taken, for practical purposes, to be twice
the bet on Banker natural nine only.

12. APPLICATION OF THE WINNING STRATEGY

As a result of the last section, our final strategy is to count total cardsn,
the number ¢ of nines, and the number s of eights. Compute the ratio n/t and
use the fraction corresponding to n/t to bet fV (where V is current capital) on
natural nines. Compute the ratio n/s and use the fraction f corresponding to
n/s to bet fV on natural eights.

In practice, one makes a table showing dollar amounts corresponding to
several values of V. Then the numbers for that V value closest to the current
one are memorized prior to each shoe.

A computer program was written to simulate the play of Nevada Baccarat.
It verified that the system was valid, and that a casino try was justified.

The system was successfully tested in the casinos. We studied the side bets
in two particular casinos, which we refer to as casinos 4 and B. In casino 4,
the limits on the main bet were $5 to $2000. Bets on the naturals ranged from
$5 to $200 on natural eight and an additional $5 to $200 on natural nine. The
bet on either natural could be divided between The Player and The Banker in
desired proportions. In casino B, the limits on the main bet were $20 to $2000
and bets on The Banker naturals only were allowed. The limits were $20 to $200
on each of The Banker naturals.

An initial capital of $4000 was used at casino 4 and initial capital of $20,000
was used at casino B. We bet according to Table 2.

Table 2 has a column for the infinite deck case to show how that approxima-
tion compares with the exact calculations. To obtain this column, we use (3)
and (10) and we find

#* = (10p, — 1)/9 = (—55/r2 + 50/r — 4)/81.

The roots of f*=0 are approximately r=1.22 and r=11.28 so f*>0 if and only
if 1.22<r<11.28. Note that df*/dr=c(11 —5r)/r?, where ¢>0. Thus f*(r) in-
creases from 0 to a maximum at r=2.2 and then decreases to 0, as r increases
from 1.22 to 11.28. As we would expect from (4), and from comparing the en-
tries in Table 2 under the « column with those under the other columns, the
values under those other columns in Table 2 agree well with this. Examination
of the results shows that the original table can be recovered from this ab-
breviated version, via interpolation and extrapolation, with errors generally
of the order of 0.001. A square in the table corresponds to a possible situation
if and only if t<7 and {<32. The column labled “«” gives the value of f* for
the infinite deck approximation.
We are indebted to the referees for several helpful suggestions.
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TABLE 2.* BETTING FRACTION f* OF CAPITAL FOR 1.3<n/t<11.6

n
n/t 20 40 80 130 >240 ©
1.3 029 026 024
1.4 052 048 045
1.5 068 064 060
1.6 079 075 071
1.7 087 083 079
1.8 092 088 084
1.9 096 091 087
2.0 098 093 090
2.1 099 094 091
2.2 099 095 091
2.5 097 093 091 089
3.0 089 084 082 081
4.0 069 065 064 063
5.0 052 049 048 047 047
6.0 039 037 035 035 035
7.0 029 027 026 025 025
8.0, 020 019 018 017 017 017
9.0 013 012 011 011 011 011
10.0 008 007 006 006 006 006
10.8 004 003 002 002 002 002
11.6 000 000 000 000 000 000

* Table entries are understood to be preceded by a decimal. This table was originally computed for all possible
values of n and £.
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