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INTRODUCTION

In the last decade it was found that the player may have the advantage in some
games of chance. We shall see that blackjack, the side bet in Nevada-style Baccarat,
roulette, and the wheel of fortune all may offer the player positive expectation. The
stock market has many of the features of these games of chance [5]. It offers special
situations with expected returns ranging above an annual rate of 259 [23].

Once the particular theory of a game has been used to identify favorable situations,
we have the problem of how best to apportion our resources. Paralleling the discoveries
of favorable situations in particular games, the outlines of a general mathematical
theory for exploiting these opportunities has developed [2, 3, 10, 13].

We first describe the favorable games mentioned above, those being the ones with
which the author is most familiar. Then we discuss the general mathematical theory,
as it has developed thus far, and its application to these games. Detailed knowledge
of particular games is not needed to follow the exposition. Each discussion of a
favorable game in Part I motivates a concluding probabilistic summary of that game.
These summaries suffice for the discussion in Part II so that a reader who has no
interest in a particular game may skip directly to the summary.

References are provided for those who wish to explore particular games in detail.
For the present, a favorable game means one in which there is a strategy such that
P (lim S, = o0) > 0 where S, is the player’s capital after » trials.

PART 1. FAVORABLE GAMES
1. BLACKJACK

Blackjack, or twenty-one, is a card game played throughout the world. The casinos
in Nevada currently realize an annual net profit of roughly eighty million dollars
from the game. Taking a price/earnings ratio of 15 as typical for present day common
stocks, the Nevada blackjack operation might be compared to a $ 1.2 billion corpo-
ration.

To begin the game a dealer randomly shuffles » decks of cards and players place
their bets. (The value of n does not materially affect our discussion. It generally is
1, 2, or 4, and we shall use 1 throughout.) There are a maximum and a minimum
allowed bet.

The minimum insures a positive probability of eventual ruin for the player who
continues to bet. The maximum protects the casino from lasge adverse fluctuations
and in particular prevents the game from being beaten by a martingale (e.g. doubling
up), especially one starting with a massive bet. In fact, without a maximum, a casino

1 The research for this paper was supported in part by the Air Force Office of Scientific Research
through Grant AF-AFOSR 1113-66.

The paper is intended in large part to be an exposition for the general mathematical reader with some
probability background, rather than for the expert.
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with finite resources can in general be ruined a.s. (almost surely) by a player with
infinite resources. The player simply bets enough at each trial so that the casino is
ruined if it loses that trial. A practical way for the player to have infinite resources
would be for the casino to extend unlimited credit for the finite time it might be needed.

The players’ hands are dealt after they have placed their bets. Each player then uses
skill in his choice of a strategy for improving his hand. Finally, the dealer plays out
his hand according to a fixed strategy which does not allow skill, and bets are settled.
In the case where play begins from one complete randomly shuffled deck, an approxi-
mate best strategy (i.e. one giving greatest expected return) was first given in 1956 [1].

Though the rules of blackjack vary slightly, the player following [1] typically has
the tiny edge of + .109. (The pessimistic figure of — .62 %, cited in [1] was erroneous
and may have discouraged the authors from further analysis.) These mathematical
results were in sharp contrast to the earlier and very different intuitive strategies
generally recommended by card experts, and the associated player disadvantage of
two or three per cent. We call the best strategy against a complete deck the basic
strategy. Determined in 1965, it is almost identical with the strategy in [1] and it gives
the player an edge of + 0.139; [22].

If the game were always dealt from a complete shuffled deck, we would have
repeated independent trials. But for compelling practical reasons, the deck is not
generally reshuffled after each round of play. Thus as successive rounds are played
from a given deck, we have sampling without replacement and dependent trials. It is
necessary to show the players most or all of the cards used on a given round of play
before they place their bets for the next round. They can then use this knowledge of
which cards have been played both to sharpen their strategy, and to more precisely
estimate their edge. (The strategies for various card counting procedures, and their
expectations, were determined directly from probability theory with the aid of com-
puters. The results were reverified by independent Monte Carlo calculations.)

For a given card counting procedure and associated strategy, there is a probability
distribution F, describing the player’s expectation on the next hand, provided c cards
have been counted. As c increases, F, spreads out. (This is a theorem, whose proof
resembles that for the similar theorem in Baccarat, mentioned in [24], page 316).
This spread in F, can be exploited by placing large bets when the expectation is posi-
tive and small bets when it is negative. Part II indicates how best to do this.

If the basic strategy is always used, E(F.) = + 0.13 9, just as from a complete deck.
But if an improved strategy, based on the card count, is used, E(F,) increases as ¢
increases, approaching values of one to two per cent or more.

Ties, in which no money is won or lost, may be discounted. They occur about one
tenth of the time. Most, but not all, of the other outcomes result in the player either
winning or losing an amount equal to his original bet.

The conditional means E(F, | F._;); k = 1,2, ..., ¢, of the successive F, are non-
decreasing. The F, are dependent; in particular when a deck “goes good”, it tends
to stay good.

Probabilistic summary

To a good first approximation, Blackjack is a coin toss where the probability p of
success is selected independently on each trial from a known distribution F (which
is a suitably weighted average of the F,) and announced before each trial.

A more accurate model considers that the p’s are dependent in short consecutive
groups, corresponding to successive rounds of play from the same deck. Another
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more accurate observation is that insurance, naturals, doubling down, and pair
splitting, each win or lose an amount different from the amount initially bet. We do
not consider this more accurate model in part II because the improvement in results
is slight and the increase in complexity is considerable.

2. BACCARAT

The terms Baccarat and Chemin de Fer are used, sometimes interchangeably, to
refer to several closely related variants of what is essentially one card game. The game
is currently popular in England and France, where it is sometimes played for un-
limited stakes. It is also played in Nevada. The game-theoretic aspects of Baccarat
have been discussed in [11, 14]. The Nevada game is analyzed in [24] which includes
results of extensive computer calculations.

The studies of Baccarat show that the available bets generally offer an expectation
on the order of —19%. The use of mixed strategies, to the very limited extent that this
is possible in some variants of the game, has but slight effect on the expectation.
Despite the resemblances between Baccarat and Blackjack, the favorable situations
detected by perfect card counting methods are not sufficient to make the game
favorable. Thus Baccarat is not in general a favorable game.

The game as played in Nevada sometimes permits certain side bets. The minimum
on the side bets was observed to be $ 5 to $ 20 and the maximum was $ 200. The bets
either won nine times the amount bet or lost the amount bet. The game was played
with eight well shuffled decks dealt from a dealing box, or shoe. Using the card
counting techniques described in [24], the side bets were favorable about 20 9; of the
time. When they were favorable, the expectations ranged as high as 4 1009,. The
expectation initially was about — 5% and as the number ¢ of cards seen increased,
the distribution F, of expectations spread out ([24], page 316) as in Blackjack. In
practice the betting methods discussed in part II, in which the bet increased with the
expectation, doubled initial capital in twenty hours.

Unlike the Blackjack player, the Baccarat side bettor has no strategic decisions to
make so E(F,) does not vary as ¢ changes. When the expectation of the side bet falls
below a certain value, it is best to make a “waiting” bet on one of the main bets.
There are either two or four side bets, similar and dependent. How to apportion funds
on the side bets is complicated by the fact that there are several of them. These com-
plexities are treated in [24].

Probabilistic summary

When only one side bet is available, the pay-off for a one unit side bet is either + 9
or — 1. If p is the probability of success, we may suppose that p is selected indepen-
dently from a known distribution F and announced before each trial. When several
side bets are available, the situation is more complex. It illustrates the general setting
of [3], page 65.

As in Blackjack, a more accurate model considers that the p’s are dependent in
consecutive groups, corresponding to successive rounds of play from the same en-
semble of (eight) decks. It also considers the effect of waiting bets.

The situation here is more complex than in Blackjack. First, it is important to
exploit any opportunities of making simultaneous bets on two or more favorable side
bet situations. Second, the pay-off is never one to one.
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3. ROULETTE

Roulette has long been the prototype of unbeatable gambling games. It is normally
regarded as a repeated independent trials process which generates at each trial
precisely one from a set of random numbers. In Monte Carlo these numbers are 0,
1,2,...,36. Players may wager on particular conventional subsets of random num-
bers (e.g. the first dozen, even, {27}, etc.), winning if the number which comes up is
a number of the chosen subset. A player may wager on several subsets simultaneously,
and each bet is settled without reference to the others. The expectation of each bet is
negative (in Nevada generally — 5.26 9, except for one worse bet, and in Monte
Carlo — 1.359%,.) Thus it has been long known that the classical laws of large numbers
insure that the player will with probability one fall behind and stay behind, tending
to lose in the long run at a rate close to the expectation of his bets.

Despite this, Henri Poincaré and Karl Pearson each examined roulette. Poincaré
([20], pages 69-70, pages 76-77; [21], pages 201-203; [9], pages 61-62) supposes that
the uncertainty in initial conditions (e.g. the angular position and velocity of the ball
and of the rotor at a given time) leads to a continuous probability density f in the
ball’s final position. He shows by an argument involving continuity only that if f has
sufficient spread, then the finitely many final ball positions are to very high approxi-
mation equally likely.

Karl Pearson statistically analyzed certain published roulette data and found very
significant patterns. In particular Pearson says, “If Monte Carlo roulette had gone
on since the beginning of geological time on this earth, we should not have expected
such an occurrence as this fortnight’s play to have occurred once on the supposition
that the game is one of chance.” And again, “To sum up, then: Monte Carlo roulette

. .is. .. the most prodigious miracle of the nineteenth century.” I’ve been told that
it was later learned that the roulette data was supplied for a newspaper by journalists
hired to sit at the wheel and record outcomes. The journalists instead simply made up
numbers and submitted them. It was their personal bias that Pearson detected as
statistically significant.

It brings to mind David Hume’s essay Of Miracles: “No testimony is sufficient to
establish a miracle, unless the testimony be of such a kind that its falsehood would be
more miraculous than the fact that it endeavors to establish. . . . it is nothing strange
. .. that men should lie in all ages.”

Poincaré assumed a mechanically perfect roulette wheel. However, wheels some-
times have considerable bias due to mechanical imperfections. Some observed in-
stances and their exploitation are discussed in detail in [25].

In Blackjack and Baccarat, we used the following fundamental principle: The
payoff random variables, hence the favorability of a game to an optimal player, depend
on the information set used to determine the optimal strategy. For instance, if used
cards are ignored in Blackjack, then we simply have Bernoulli trials with p =
+ 0.13%. However, as more card counting information is employed, the distribution
of p spreads out (has more structure), its expected value increases, and it can be more
effectively exploited. The roulette system we now describe illustrates the use of an
enlarged information set.

Play at roulette begins when the croupier launches the ball on a circular track which
inclines towards the center so the ball will fall into the center when it slows down
sufficiently. The center contains a rotor with a circle of congruent numbered pockets
rotating in the opposite direction to the ball. The ball eventually slows and falls from
its track on the stator, spiralling into the moving rotor and eventually coming to rest
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in a numbered pocket, the “winning number”. Bets may generally be placed until the
ball leaves its track. This is crucial for what follows.

A collaborator and I tried to use the mechanical perfection of the wheel — the very
perfection needed to eliminate the bias method — to gain positive expectation. Our
basic idea was to determine an initial position and velocity for the ball and rotor. We
then hoped to predict the final position of the ball in much the same way that a
planet’s later position around the sun is predicted from initial conditions, hence the
nickname “the Newtonian method”.

The Newtonian method occurred to me in 1957, and by 1961 the work described
here had been completed. Although the wheel of fortune device was mentioned in
LIFE Magazine, March 27, 1964, pp. 80-91, we pointedly did not mention the roulette
work there. However, we do so in [22], page 181-182. The Newtonian method is also
mentioned in the significant book by R. A. Epstein, The Theory of Gambling and
Statistical Logic, Academic Press, pp. 135-136, (1967).

The stator has metal deflectors placed to scatter the ball when it spirals down and
the pockets are separated by vertical dividers (“frets™) which also introduce scattering.
These scatterings were measured and found to be far from sufficient to frustrate the
Newtonian approach. However, there were additional sources of randomness which
did frustrate this approach. (We never. satisfactorily identified these causes and can
only speculate — perhaps the causes included minute imperfections in track or ball or
high sensitivity of the coefficient of friction to dirt or atmospheric humidity.)

We were led to a variation we called the quantum method. If a roulette wheel is
tilted slightly the ball will not fall from a sector of the track on the “high” side. The
effect is strong with a tilt of just 0.2°, which creates a forbidden zone of a quarter to a
third of the wheel. The non-linear differential equation governing the ball’s motion
on the track is the equation for a pendulum which at first swings completely around
its pivot, but is gradually slowed by air resistance. (It is illuminating to sketch the
orbits of the equation, as indicated in [4], page 402, problem 3.) The experimental
orbits of angle versus time could be plotted easily in the laboratory by taking a movie
of the system in motion, along with a large electric clock whose hand swept out one
revolution per second!

The existence of a forbidden zone partially quantizes the angle at which the ball
can exit, and hence quantizes the final angular position of the ball on the rotor. The
physics involved suggests that the quantization is in fact very sharp: Suppose the ball
is going to exit beyond the low point of the tilted wheel. Then it must have been
moving faster than a ball exiting at the low point, so it reaches its destination sooner.
But it has also gone farther, and the two effects tend to cancel. They in fact cancel
very well. A similar argument shows that balls which exit before the low point have
been slower, hence later, offsetting the fact they have not gone as far. Observation
verifies the conclusions of this heuristic argument.

The sharp quantization of ball final position, as a function of initial conditions,
makes remarkably accurate prediction possible.

Using algorithms, it was possible by eye judgements alone to estimate the ball’s
final position three or four revolutions before exit (perhaps five to seven seconds
before exit, which was ample time in which to bet) well enough to have a + 157
expectation on each of the five most favored numbers. A cigarette pack sized tran-
sistorized computer which we designed and built was able to predict up to eight revo-
lutions in advance. The expectation in tests was + 44 %.

One third of the Nevada roulette wheels which we observed had the desired tilt of
at least 0.2°. The input to the computer consisted of four push-button hits: two when
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the 0 of the rotor crossed a fiducial mark during successive revolutions and two when
the ball crossed a fiducial mark on successive revolutions. The decay constants of ball
and rotor, approximately constant over the class of wheels observed, had been deter-
mined earlier by simple observations.

The ultimate weakness of the system was that the house could foil it by forbidding
bets after the ball had been launched.

Probabilistic summary

Roulette on a slightly tilted wheel is repeated independent trials. At each trial the
player may wager on one or more subsets of the finitely many elementary outcomes.
A wager on a subset wins if and only if it contains the elementary outcome that occurs.
There are subsets with expectations of 44 9. Our procedure in practice was to bet on
one of eight neighborhoods of five numbers. Thus the payoff for a bet of .2 units on
each of five numbers was either —1 or 4 6.2. The expectation of + 44 % corresponds
to a probability of success of .2. We remark that our knowledge of p increases with
the sample size.

4. THE WHEEL OF FORTUNE

The wheel of fortune, featured in many Nevada casinos, is a six foot vertical wheel
with horizontal equally spaced pegs in its rim. As the wheel spins, a rubber flapper
strikes successive pegs, slowing the wheel. There are generally 48 to 54 spaces between
the pegs, numbered with 1s, 2s, 5s, 10s, 20s, and two distinct 40s. A player betting a
unit on one of these outcomes is paid that number of units if his outcome occurs. The
wheel behaves to good approximation as though a constant increment of energy is
lost each time a peg passes the flapper. Thus 6, the total angle of rotation, is propor-
tional to the energy E, which equals Iw?, where I is the moment of inertia and o is
the angular velocity of the wheel.

In practice, a transistor timing device of match box size (a “spinoff” from the
roulette technology) produced a faint click a chosen time after a push-button was hit.
The button was hit when a specified 40 passed the flapper. The timer was set so the
click was approximately when the second 40 reached the flapper. If it clicked after the
second 40 reached the flapper, the wheel was “fast” and would go farther than
average before stopping. If it clicked before the second 40 reached the flapper, the
wheel was “slow”.

For a given timer setting, a table was constructed empirically, giving the approxi-
mate final position of the wheel as a function of the number of spaces the second 40
was fast or slow when the click was heard.

In practice one could determine with certainty which of the two 40s could not occur.
Thus, one could always bet on the “right” 40. On a wheel observed in the Riviera
Hotel there were 50 numbers, including 22 ones, 14 twos, 7 fives, 3 tens, 2 twenties
and 2 forties. Betting on the “right” 40 would win on average 80 units in 50 trials and
lose 48, for an expectation of 32/50 or 64 %.

Probabilistic summary

Ignoring obvious refinements, we have repeated independent trials with probability
p = 1/25 of success at each trial, a payoff for a 1 unit bet of — 1 or + 40, and an
expectation of + 64 9.
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5. THE STOCK MARKET

The stock market is a natural economic object for mathematical analysis because
vast quantities of precise historical data are available in numerical form. There have
been many attempts to mathematically predict future price behavior, using as a basis
various subsets of the available information. Most notable are the attempts to predict
future prices from past price behavior. These attempts have caused the view to be
widespread in academic circles that, to first order, common stock prices are a random
walk and changes in common stock prices are log normally distributed with a certain
mean and standard deviation [5].

Practitioners hotly contest this view. Part of the dispute is caused by practitioners
who are unwilling or unable to test their claims scientifically and part of it is due to
the success of a few practitioners who use much more information than past price
history alone. A recent study suggests strongly that “relative strength” in a price series
is continued and, consequently, that past prices do have some value in predicting
future prices [16].

Whether or not we can predict the future course of stock prices’, there are invest-
ments in combinations of securities which can yield high expected return [23]. These
investments involve convertible securities. A convertible security is one which, in
some cases with the addition of money, is exchangeable (per share) for a certain num-
ber of shares of another security. Convertible securities include convertible bonds,
convertible preferreds, stock options, stock rights, and warrants. There are several
billion dollars worth of convertibles listed on the New York and American Stock
Exchanges.

The analysis of other convertibles follows from the analysis of the common stock
purchase warrant. We therefore restrict ourselves to these in our discussion, and shall
refer to them simply as warrants.

A warrant is the right or option to buy a certain number of shares of common for
a certain price, until a certain expiration date (warrants which do not expire are
called perpetual). The terms ordinarily read: A4 warrants plus E dollars buy C shares
until D date. To avoid normalization problems, we suppose A = C = 1. Then E is
the “exercise price” of the warrant. The prices of warrant and common are related
and it is this which allows successful investments. One observes: (1) The price W of
the warrant should increase as the price S of the stock increases. (2) If W + E < S,
warrants can be bought and common sold short, simultaneously. The warrants are
then converted to common which is delivered against the short position. Neglecting
commissions, a profit of S — W — E per warrant results. The purchase of warrants
tends to increase W and the sale of common tends to decrease S, until W + E = S.
Thus W > S — E normally holds. (3) The common has advantages over the warrant
such as possible dividends, or voting rights, hence we also normally expect W < S.

Thus for practical purposes points (S, W) representing (nearly) simultaneous prices
of a common stock and its warrant are confined to the part of the positive quadrant
between the lines W = Sand W = S - E.

The prices W and S at a future time are random variables but they are related.
As E(S) increases we would expect, and past history verifies ([12, 23]), that E(W)
tends to increase. In fact the points (S, W) tend to lie on certain curves which depend

1 The great mathematician Karl Friedrich Gauss was successful in the market but we have little
knowledge of his methods. On a basic salary of 1000 thalers per year he left an estate in cash plus
securities of 170,857 thalers ([7], page 237).
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on several variables, most notably the time remaining until expiration of the warrant.
Thus, although we may not know the price S of the common, or the price W of the
warrant at a given future time, we do know that (W, S) is near one of these curves.
The family of curves qualitatively resembles the family W = (S? -+ E?)'/” - E, where
z = 1.3 + 5.3/T and T is the number of months remaining until expiration.

A historical study of expiring warrants (from here on we limit ourselves for con-
venience to warrants traded on the American Stock Exchange) suggests that during
the last two years or so before expiration they tend to trade at prices which are much
too high. For instance the average loss from buying each of a certain 11 listed war-
rants 18 months before expiration and holding until 2 months before expiration was
46.0%, an annual rate of 34.5 9 ([23], page 37). Thus selling warrants short seems to
yield high expectation. However, it also happens to result in occasional large losses
which, by the criterion of Part II, are extremely undesirable despite the high overall
expectation. We can sharply reduce this high variance and yet retain a high expecta-
tion by using the so-called warrant hedge. The technique is to simultaneously sell
short overpriced warrants and buy common in a fixed ratio (generally from one to
three warrants will be shorted for each share of common bought). The position is
held until just before expiration of the warrant (at which time the warrant sells at a
“correct” price) and then it is liquidated.

Here is the rationale. We are mixing two investments with positive annual expecta-
tions of say 34.59%; for the warrants and 109, for the common, resulting in an invest-
ment whose overall expectation must therefore be somewhere between these figures.
(We suggest 109, for the common because this approximates the observed mean rate
of return from common stocks during this century due to price appreciation plus
dividends.) Buying the common leads to a gain when the common rises and a loss
when it falls whereas shorting warrants leads to a gain when the common falls and
leads to a loss only if the common rises substantially. Thus the risks tend to cancel
out. In fact, the hedge generally yields a profit upon expiration of the warrant, for a
wide range of prices of the common.

If we make assumptions about the probability distribution of the price of the com-
mon at expiration of the warrant, we get more precise information about the random
variable representing the payoff from the hedge. Let the probability measure P with
support [0, o) describe the distribution of the stock price S, at expiration. Then

o

E(S}) =6f x"dP(x).

Let S, be the present price and let E be the exercise price. Assume that P(S, = S,
+ t) = P(S; = S, —t) for each ¢t > 0, i.e. for any ¢, the chance of a price rise of at
least ¢ is no less than the chance of a price drop of at least z. This is a very weak
assumption. Note that it does imply E(S,) = S,.

Just before expiration W, = 0if S, < Eand W, = S, - Eif S, > E. Thus the
final gain from shorting a warrant at W, is W, if S, < E and is W, - S; + Eif
S, > E. The gain from buying a share of common at S, is, of course, S, — Sp.

Hence if we assume one share of common is purchased at .5E and one warrant is
shorted at .2, the final gain G, is S, - .3Eif S; < E and .7Eif S; > E. A standard
measure-theoretic argument yields E(G,) = .2E. Using 1009, margin, the percent
profit is E(G,) [ .7E > 28%,. With 100% margin on the warrants and 70 %, margin
on the common, it is at least .2E [ .55E > 36%,. With 709, margin on each, it is at
least .2 / .49 > 40%, an annual rate of more than 209 if the warrant expires in
two years.
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It is interesting to calculate E(G ) by assuming that S is log normally distributed.
Letting s, = S, / E, we thus assume that s, has the density function

f(x)=(xo \/71?)’1 exp [— (In x—p)?* /2 62 |, where p and o are parameters de—
pending on the stock. We note E(s;) = exp(pn + 6’ /2).

If ¢ is the time in months remaining until expiration (which is when s is realized),
then we assume y. = log s, + mt and 6® = a’t, where S, = s, E is the present stock
price and m and a are constants depending on the stock. Thus E(s;) = s, €xp
[(m + a*/2)t]. A mean increase of 109 per year is approximated by setting 12(m 4
a?[2) = .1. If we estimate a® from past price changes we can solve for m.

Letting w, = W,/E, where W, is the final warrant price, a calculation yields
E(w;) = E(s;) N(u/o + 6) — N(u/o), where N is the normal distribution. (Compare
the equivalent expression from pp. 464-466 of [5].) Now suppose that s, = .5, that a
has the realistic value of .1s, or .05, and that 12(m -+ &*/2) = .1, whence m =

.085/12. Then for ¢ = 24 we have 6 = /.06 = .245and p = log .5 + .17 = -.523,
This yields E(w,) = .0015 and E(s;) = .61, whence E(G,) = .20 + .11 = .31. Thus
the profit, with 70%, margin on both warrant and common, is .31/.49 or 63.3% and
the annual rate is 31.6 9. Note that the warrant is virtually worthless!

Instead of selling one warrant short and buying one share of common, we can sell
short w warrants and buy s shares of common. Neglecting commissions, which we do
throughout for simplicity, the gain G at any point (S, W) is s(S - Sp) —w(W - Wj).
Thus the line G = 0, the zero profit line, is the line through (W, S,) with positive
slope s/w = 1/m. We call m the mix. Points below the zero profit line represent gain
and points above it represent loss. If 1 << m < oo, the zero profit line intersects the S
axis at S, — m W, and it intersects the line W = S~ E at S = [m(W, + E) - S,]/
(m-1); W= (mW, + E-Sp)/[(m-1).

When the warrant expires the hedge position will yield a profit if S, is between
the S values of the two intersections and it will yield a loss if S, is beyond the inter-
sections. For instance, if S, = .5E and W, = .2E, the choice m = 2 insures a final
profit if .1E < S, < 1.9E. Such safety is characteristic of the warrant hedge.

The final gain G is s(S; - Sp) + wW, if S; < Eand itis s(S; - So) + w(W, +
E - S;)if S; > E. Thus as a function of S/ it is an inverted “V” with apex above
S, = E. With 1009, margin, the initial investment is s So + w W, so the gain per
unit invested is g, = G /(s So + w W;). With margin of « on the common and $ on
the warrants itis g, = G,/(x s So + B w Wy).

We have assumed so far that a hedge position is held unchanged until expiration,
then closed out. This static or “desert island” strategy is not optimal. In practice
intermediate decisions in the spirit of dynamic programming lead to considerably
superior dynamic strategies. The methods, technical details, and probabilistic sum-
mary are more complex so we defer the details for possible subsequent publication.

Probabilistic summary

The warrant hedge may offer high expectation with low risk. The gain per unit
grisg, = [(S; + So) +m Wol/ (o« So + Bm Wo) when S; < Eand g, = [(S;~ So)
+ m(Wy + E-Sp)]1/ (¢ So + Bm W,) if S, > E. The gain per unit depends only
on the random variable S . This has an unknown distribution but it can be estimated.
The other quantities are constants depending on circumstances.
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PART II. A MATHEMATICAL THEORY FOR COMMITTING
RESOURCES IN FAVORABLE GAMES

1. INTRODUCTION: COIN TOSSING

Suppose we are confronted with an infinitely rich adversary who will match all bets
we make on repeated independent trials of a biased coin (whose two outcomes are
“heads” and “tails”.) Assume that we have finite capital X,,, that we bet B; on the
outcome of the ith trial, where X is our capital after the ith trial, and that the proba-
bility of heads is p, where 1 < p <C 1. (This is approximately the situation in Nevada
blackjack, except that the game is played with a “mix” of biased coins.) Our problem
is to decide how much to bet at each trial. A classic criterion is to choose B; so that
our expected gain E(X; — X;_,) is maximized at each trial, which is equivalent to
maximizing E(X,) for all n.

Define T; by T; = 1 if the jth trial results in success and T; = —1 if the jth trial

results in failure. Then X; = X;_; + T;B;, j = 1,2,...,and X, = X, + X T;B,
j=1

J

We assume that T';, X;, and B; are all random variables on a suitable sample space 2.
If, for example, B; is a function of X, X;, ..., X;_, as it is in the common gambling
systems, e.g. Martingale, Labouchere, etc. (note that B, = | X, — X, | so we need
not add the B, k = 1,...,j- 1), then we see by induction that B; is a function of
Xo, Ty, Ty, . . . Hence the underlying sample space can be taken to be the space of all
sequences of successes and failures, with the usual product measure.

Suppose, more generally, that the player determined B; by examining X,, ...,
X;_,. and then “consulting” a chance device, €.g., a near-by roulette wheel. Then the
sample space consisting of an infinite product of spaces, each of them a joint outcome
of the roulette wheel and the latest trial, might be suitable. Such possibilities are in-
cluded if we simply assume T, X; and B; are all random variables on some suitable
sample space Q.

When B; > X;_,, the player is betting more than he has. He is asking for credit.
This is common in gambling casinos, in the stock market (buying on margin), in real
estate (mortgages) and is not unrealistic.

When B; < 0, the player is making a “negative” bet. To interpret this, we note
that in our sequence of Bernoulli trials, or coin toss between two players, that what
one wins, X; — X,, the other loses. To make a negative bet may be interpreted as
“backing” the other side of the game, to taking the role of the “other” player.

In particular, the payoff B;T; from trial j may be written as (—B;) (—T;). If B; < 0,
then —B; = 0 and may be interpreted as a nonnegative bet by a player who succeeds
when —T'; = 1, i.e., with probability g, and who fails with probability p. The —T; are
independent so we have Bernoulli trials with success probabilities g, i.e., the other
side of the game.

For simplicity we shall assume in what follows that 0 < B; < X;_,, but we may
wish at a future time to remove one or both of these limitations.

We also assume that B; is independent of T}, i.e., the amount bet on the jth out-
come is independent of that outcome.

Definition: A betting strategy is a family {B; }suchthat0 < B; < X;_,,j=1,2,...

Theorem 1: The betting strategies B; = X;_; whenp > %; B; = 0, p < }; B; arbi-
trary when p = }; are precisely the ones which maximize E(X;) for each j.

n n

Proof: Since X, = X, + ¥ B;T;, E(X,) = X, + X E(B;T;) =

j=1 j=1

Jor
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=X, + Z (p—q)E(B )-Ifp—~q = 0,ie., p = },then E( B;) does notaffect E( X,,).

Ifp-gq > 0 i.e. p > 1, then E(B;) should be maximized, i.e., B; = X}, to maximize
E(X,). Similarly, if p — g < 0, i.e., p < 1, then E(B;) should be minimized to maxi-
mize the jth term, i.e., B; = 0. Clearly, these maxima are not attained with other
choices for B;. This establishes the theorem.

Remark. In the foregoing discussion, the Bernoulli trials and the 7 can be general-
ized, yielding a more general theorem. (The T; become “payoff functions™ that are
not necessarily identically distributed; roulette is the classic example.) The particular
case of blackjack is covered, for instance, by replacing p and g throughout by p;
and g; for the respective probabilities that 7; = 1 or —1.

To maximize our expected gain we must bet our total resources at each trial. Thus
if we lose once we are ruined, and the probability of this is 1 — p* — 1 so maximizing
expected gain is undesirable.

2. MINIMIZING THE PROBABILITY OF RUIN

Suppose instead that we play to minimize the probability of eventual ruin, where
ruin occurs after the jth outcome if X; = 0. If we impose no further restriction on B;,
then many strategies minimize the probability of ruin. For example, it suffices to
choose B; < X;_,/2. The discreteness of money makes it realistic to assume B; =
C > 0, where C is a non-zero constant. We further restrict ourselves to the subclass
of strategies where B; equals C whenever 0 < X;_; < a, B; =0if X;_; < 0 or
X;_; = a, and C divides both a - z and z, where we have set z = X,,. This lets us use
the gambler’s ruin formulae ([8], page 314).

Consider the gambler’s ruin situation: X, = z, B; = 1iff0 < X;_; < a,B; =0
if X;_; =0or X;_; = a, aand z are integers. Let r be a positive number (necessarily
rational) such that zr and ar are integers. Let R(r) be the ruin probability when z and a
are replaced by zr and ar, respectively. This is equivalent to betting r ~* units when
0 < X;_; < a, in the original problem.

We have R(r) = (0" - 6™) /(0" - 1), where 0 < p +  and 0 = ¢/p.

Theorem 2: (a) If 1 > p > 1, R(r) is a strictly decreasing function of r. (b) If
0 < p < %, R(r) is a strictly increasing function of r.

Proof: Follows from Lemma 3 below.

Part (a) of the Theorem says that in a favorable game, the chance of ruin is decreased
by decreasing stakes. Note that for p > 1, i.e.,, 8 < 1, lim R(r) = 0, hence by
making stakes sufficiently small, the chance of ruin can be made arbitrarily small.

Lemma 3. Let a >z > 0, x > 0. If 0 < 0 < 1, then f(x) = (6= - 6*) / (1 -6°%)
is strictly decreasing as x increases, x > 0. If 6 > 1, f(x) is strictly increasing as x
increases, x > 0.

Proof: Elementary calculations which we omit.

Theorem 2(a) shows that, at least in the limited subclass of strategies to which it
applies, we minimize ruin by making a minimum bet on each trial.

In fact, this holds for a broader class of strategies:

Theorem 3': If 1 > p > 4, the'strategy B; = 1if 1 < z < a-1, B; = 0 otherwise
(timid play), uniquely minimizes the probability of ruin among the strategies where B;
is an integer satisfying 1 < B; < min (z, a-z) if 1 < z < a-1, B; = 0 otherwise.

Proof: We first show that 1f t1m1d play is optimal, then it is uniquely so. Let g, be
the probability of ruin, starting from z, under timid play. To establish uniqueness it
suffices to show
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qn<qu+k+qqz-ka2§k§a—2,2—k§0,z+k§a. (1)
Using g, = (0°-97) / (6°-1) and simplifying (1), we find that it is equivalent to show
fp)=p* ' +qg* 1 -p g >0,12<p= 1. )

This follows at once from the observations (1) = 0, f(1) = 1, and f'(p) > 0,
I<p=s1.

To show that timid play is optimal, let Q(z) = 1-¢,, and adopt the terminology
of [6]. Then Q(z) is the probability of success, both for z in our original game, and
for z/n in a normalized game where the possible fortunes are F = {0, 1/a, 2/a, ...,
zfa, ..., 1 = ala }, and the betting units and limits are 1/a as large as before.

The establishment of (1) shows Q(z) is excessive. But obviously u(z) < Q(z)
< U(z) so by [6, Theorem 2.12.3], Q(z) = U (2).

Thus timid play is the one and only strategy in our class of strategies which mini-
mizes the probability of ruin.

Remark: In [6] it is shown that bold play is optimal but not necessarily unique
when p < % (pages 2, 871f, 101fF). If there is also a legal upper limit to bets, there may
be more than one optimal strategy; whether bold play is one of them seems to be
unknown (page 4). Betting systems which minimize the probability of ruin in certain
favorable games are also discussed in [10].

The strategy which minimizes ruin has the unsatisfactory consequence that it also
minimizes our expected gain. Some strategy is called for which is intermediate be-
tween minimizing ruin (and expectation) and maximizing expectation (assuring ruin).
A remarkable solution, in a certain sense very close to best possible, was proposed
in [13].

3. THE KELLY CRITERION

Consider Bernoulli trials with 1 > p > $and B; = fX;_;, where 0 S f< lisa
constant. (This is sometimes called “fixed fraction” or “proportional” betting.) Let
S, and F, be the number of successes and failures, respectively, in n trials. Then

X, =X, (1 + )" (1-NH™

Observe that f = 0 and f = 1 are uninteresting; we assume 0 < f < 1. Note too
that if f <C 1, there is no chance that X, = 0, ever. Hence ruin, in the sense of the
gambler’s ruin problem, cannot occur. We reinterpret “ruin” to mean that for each
€>0,lim P[ X, = ¢] = 0, and we shall see that this can occur. Note too that we

n

are now assuming that capital is infinitely divisible. However, this assumption is not
a serious problem in practical applications of the theory.

Remark: The min-max criterion of game theory is an inappropriate criterion in
Bernoulli trials. If B; is a positive integer for all j, the maximum loss, i.e. ruin, is always
possible and all strategies have the same maximum possible loss, hence all are equiva-
lent. If capital is infinitely divisible, ruin is as we redefined it, and we restrict ourselves
to fixed fractions, then for an infinite series of trials the min-max criterion (suitably
probabilitistically modified) considers all f with 1 = f > f, equivalent and all f with
0 < f < f. equivalent. It chooses the latter class. For a fixed number n of trials,
smaller f are preferred over larger f. The criteria of minimizing ruin or of maximizing
expectation likewise fail to make desirable distinctions between the fixed fraction
strategies.



285

The quantity log [ X, / X,]'"" = (S, /n) log (1 + f) + (F,/n) log (1 - f) mea-
sures the rate of increase per trial. Since time is important it is plausible to in some
sense maximize this. Kelly’s choice [13] was to maximize E log [ X, / X,]'/* = p log
(1+f)+ qlog(1-f) = G(f), which we call the exponential rate of growth. The
following theorems show the advantages of maximizing G (f).

Theorem 4. If 1 > p > 4, G (f) has a unique maximum atf* =p-¢,0 <f* < 1,
where G (f*) = p log p + q log g + log 2 > 0. There is a unique fraction f, > 0
such that G (f) = 0, and f, satisfies f* < f, < 1. Further, we have G(f) > O,
0<f<f; G(f)<O0,f> f, with G (f) strictly increasing, from 0 to G (f*), on
[0,f*], and G (f) strictly decreasing, from G (f*) to — co on [f*, 1].

Theorem 5(a). If G(f) > O, then lim X, = oo as., i.e., for each M, P [ lim

X, >M]=1.

(b) If G(f) < 0, then lim X, = O a.s., i.e., for each € > 0, P[lim X, < ¢] = 1.
(© If G(f) = 0, then lim X, = o a.s. and lim X, = 0 a.s.

Thus for 0 < f < f,, the player’s fortune will eventually permanently exceed any
fixed bounds with probability one. For f = f, it will almost surely oscillate wildly

between 0 and + oo. If f > f,, ruin is almost sure.
1/n
Proof: (a) By the Borel strong law ([17], page 19), limlog [ X,/ X,] = G(f) >0

with probability 1. Hence, a.s., for o € Q, where Q is the space of all sequences of
Bernoulli trials, there exists N (») such that for n = N (o),
log [X, [ Xo1'" = G (f)/2>0.
But then X, = X e"¢Y/2 for n > N(w) so X, » .
(b) The proof is similar to part (a).
(c) We use the fact that, given any M, [im S, > np + M + 1 and

lim S, < np- M—1. Then if S, = np + M, log [ X,/ X,1"" = M

n-(np + M) 1+f M 1+f
n

log (1 + f) + log (1-f) = G(f)+—1 T=F= 7 8Ty

1+ £A\M .. s
i=7) Since S, = np + M infinitely often, a.s., then

M
) a.s. Since the right side may be chosen arbitrarily large,

whence X, = X, (

Exngxo(l_f

lim X, = oo as.
n

The proof that lim X, = 0 a.s. is similar.
Theorem 6: If G(f;) > G(f3), then lim X, (f;)/X,(f;) = o as.

Proof: log [ X, (f;)/ Xo]'"~log [ X, (fz)/Xo)”"

n Sn 1+ ,. 1-
= log [X, (f) | X, (f)1" =710g <1 +j:; 1 og 1_2 . Therefore, by the

Borel strong law of large numbers, lim log [X,,(fl)/X,,(fz)] > G(f1)-G(f,) >0

with probability 1. Now proceed as in the proof of Theorem 5(a).
In particular, we see that if one player uses /* and another, betting on the same favor-
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able situation, uses any other fixed fraction strategy f, then lim X, (f*)/ X, (f) =

with probability 1. This is one of the important justifications of the criterion “bet to
maximize E log X,.”

Bellman and Kalaba ([2], pages 200-201) show that f* not only maximizes E log X,
within the class of all fixed fraction betting strategies but in the class of “all” betting
strategies.

This also is a consequence of the following theorem, part of which was suggested
by a conversation with J. Holladay. Consider a series of independent trials in which
the return on one unit bet on the ith outcome is the random variable Q;. Then

H(X/X, 1)and Elog X, = 2 Elog(X [Xi-1)- Wehave X; = X;_, +

B,Q; and X,/ Xi_i =14+ (B;/ X;_1) Q, Thus each term is of the form E log (1 +
F;Q;) where the random variable F; depends only on the first i~1 trials, Q; depends
only on the ith trial, and hence F; and Q, are independent. We are free to choose the
F; to maximize E log (1 + F;Q;), subject to the constraint 0 < F; < 1.

Theorem 7: If for each i there is an f;, 0 < f; < 1, such that E log (1 + £;Q;)
is defined and positive, then for each i there is a number f;* such that E log (1 + F;Q;)
attains its unique maximum for F; = f¥ a.s. To avoid trivialities we assume Q; + 0
a.s., each i.

Proof: It follows that the domain of definition of E log (1 + f;Q;) is an interval
[0, a;) or [0, a;], where a; = min (1, b;) and b; = sup {f; : /;Q; > O a.s. } > 0. Since
the second derivative with respect to f; of E log (1 + £;0;) is —E(Q? /(1 + £:0)*),
which is defined and negative, any maximum of E log (1 4 f;Q;) is unique. The func-
tion is continuous on its domain so if it is defined at a;, there is a maximum. If it is

not defined at g;, then lim E log (1 + f;Q;) = - o0 so again there is a maximum.
fila
By the independence of l:"i and Q,, we can consider F;(s,) and Q,(s,) as functions
on a product measure space S; X S,. Then

Elog (1+FiQ;) = I IlOg(1+F(81)Q1(82)) = E Elog (1 + F;(s1) @)

< Elog (1 +f* Q,) w1th equality if and only if E log (1 + F;(s;) Q;) =
E log (1 + f* Q;) a.s., which is equivalent to f;* Q;, = F;(s;) Q; a.s., and by the in-
dependence this means either f* = F; a.s. or Q; = 0 a.s. hence f;* = F; a.s., and the
theorem is established.

We see in particular from the preceding theorem that for Bernoulli trials with suc-
cess probability p; on the ith trial and 1 > p; > 1, E log X,, is maximized by simply
choosing on each trial the fraction f,*= p; - q; which maximizes E log (1 + f;Q;).

4. THE ADVANTAGES OF MAXIMIZING E LOG X»

The desirability of maximizing E log X, was established in a fairly general setting
by Breiman [3]. Consider repeated independent trials with finitely many outcomes
I= {1,...,s} for each trial. Let P(i) = p;, i = 1,...,s, and suppose that
{A,,..., A, }is acollection of (betting) subsets of I, that each i is in some 4,, and

that payoff odds o, correspond to the 4,. We bet amounts By, . . ., B, on the respective
« and if outcome i occurs, we receive X Bjo; where the sum is over {j:ie 4; 1.

We make the convention that 4, = I'and o, = 1, which allows us to hold part of our
fortune in reserve by simply betting it on 4,. We have, in effect, a generalized roulette
game.
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Roulette and the wheel of fortune, as described in Part I, are covered directly by
Breiman’s theory.

The theory easily extends to independent trials with finitely many outcomes which
are not identically distributed but which are a mix of finitely many distinct distribu-
tions, each occurring on a given trial with specified probabilities. The theory so ex-
tended applies to Blackjack and Nevada Baccarat, as described in Part 1.

Breiman calls a game (i.e., a series of such trials) favorable if there is a gambling
strategy such that X,, — oo a.s. Thus the infinite divisibility of capital is tacitly assumed.
However, this is not a serious limitation of the theory. If the probability is “negligible”
that the player’s capital will at some time be “small,” then the theory based on the
assumption that capital is infinitely divisible applies to good approximation when the
player’s capital is discrete. This problem is considered for Nevada Baccarat in [24],
pages 319 and 321.

Breiman establishes the following about strategies which maximize E log X,.

1. Allowing arbitrary strategies, there is a fixed fraction strategy B; = (fi, ..., /)
which maximizes F log X,,.

2. If two players bet on the same game, one using a strategy A* which maximizes
E iog X, and the other using an “essentially different” strategy A, then li:n

X, (A*) ] X,(A) > oo as.

3. The expected time to reach a fixed preassigned goal x is, asymptotically as x in-
creases, least with a strategy which maximizes E log X,,.

Thus strategies which maximize E log X, are (asymptotically) best by two reason-
able criteria.

5. A STOCK MARKET EXAMPLE

Though in practice there are only finitely many outcomes of a bet in the stock
market, it is technically convenient to approximate the finite distributions by discrete
countably infinite distributions or by continuous distributions. In fact it is generally
difficult not to do this. The additional hypotheses and difficulties which occur are,
from the practical point of view, artificial consequences of the technique. Hence the
new theory must preserve the conclusions of the finite theory so again we apportion
our resources to maximize E log X,,.

As a first example, consider the following stock market investment. It was the first
to catch our interest, and was based on a tip from a company insider.

Suppose a certain stock now sells at 20 and that the anticipated price of the stock
in one year is uniformly distributed on the interval [15, 35]. We first compute f* and
G (f*), assuming the stock is purchased and fully paid for now, and sold in one year.
The purchase and selling fees have been included in the price. Thus, the outcome of
this gamble, per unit bet, is described by dF (s) = C_;, 3,(s) ds, where F is the asso-
ciated probability distribution and C,(s) is 1 for s in 4 and O for s not in A4.

The mean mof Fis 2 > 0. Also

G(f) = j log, (1+ fs) ds, G'(f) = j Slog;,eds and lim G'(f) =-o.

Therefore Theorem 8 below applies and there is a unique f * such that 0 <f* < 4and .
G'(f*) = 0. To obtain f*, it suffices to solve

H d
D = O k() =6 () g = § (A (s Ilffs

-3
=1-(1/f)log, (1 +fs) which reduces to 1 — (1/f) loge 37— h(f).
-3

%f



288

Now A(f) has the same sign and root as G'(f) on (0,4). Since £(3) = 1 -} log,
13> 0, G'(f) > 0 for 0 < f< 3. Therefore 3 < f* < 4; calculation yields f* =
3.60".

Thus if the maximum fraction of current capital which can be bet is 1, we should
bet all our capital. However, if margin buying is allowed, we should (consistent with
our ability to cover later) be willing to bet as much as possible, up to a fraction f*
which is 3.6 times our current capital.

The mathematical expectation for buying outright is 0.25 ¥, if buying on margin
is excluded and 0.90 V, if unlimited buying on margin is permitted, and additional
coverings can be made later as required, and we bet f* = 3.60 of our current capital.

Integration yields
G(f)=1[(Qoge)/f1{A + 3/ [In(1+3f/4)-1]-(1-f/4) [In(1-f/4)-1]}
from which we find G (1) = 0.28 and G (3.60) = .59.

Next, we compute f* and G (f*), assuming that calls are purchased for 2 points
per share. Thus the outcome of this gamble per unit bet is described by the probability
distribution F with mass 5/20 at -1, and dF (s) = 2/20if -1 < s < 6.5.

6.5

The mean m = 1.8125 > 0. Also G(f) = (5/20) log, (1-f) + (2/20) | log,
-1

(1 +f5) ds and G (f) = %‘:’ + (2/20) j Slogz; ds, from which it is

clear that lim G’ (f) = — oo. Therefore, again by Theorem 8 below, there is a unique
FEg! .
f* such that G'(f*) = 0and 0 < f* < 1.

It suffices to solve i (f) = 0 where A (f) = 20G'(f) /log, e

_5 = §{7 5- }1 (l—fzﬁ—jl } We find /* = 0.57. The mathematical expec-
tation of the call purchase process is 1.8125 /* ¥V, or about 1.03 V.

Integration yields
G(f)=(%)log, (1-f) + (In, e/10f) (1 + 6.5/ ) [In (1 + 6.5)-1]-(1-1)
[In(1-f)-1]. We find G (0.57) = 0.55.

Thus we have the interesting result that the expectation from buying calls is higher
than from buying on unlimited margin but that the growth coefficient is higher from
buying on unlimited margin. Our criterion selects the latter investment.

For buying on margin G (3~) = .55 so our criterion selects buying on margin if
the margin requirement is less than {1~ and buying calls, if possible, if the margin
requirement exceeds 3.

In the preceding example we needed the following theorem to establish the unique-
ness of /*. We deﬁnea =sup {t: F(-,%) =0 }and note thatif 1 4 fa > 0 and

the integral G (f) = jlog2 (1 + fs) dF () is defined, then G’ (f) = jsll(_)fzfedF( 5).
(See, e.g. [17], page 126). ® Slog. e
Theorem 8: The function G’ (f) = | 1 _'_g}s dF (s) is monotone strictly de-

creasing on [0, — 1/a). If the meanm = | s dF (s) > 0, then the equation G'(f) =

Tslog,e _ C s . B U,
_E T f5 dF (s) = 0 has exactly one solution f* in the interval (0, - 1/a) iff ”1‘1_1‘1‘11/“

G’ (f) < 0. In this event, G (f) is monotonely strictly increasing for fin [f*, - 1/a).

N N
N - > ’ ’ .
Proof:If0 < f; < f, <-1/a, i f13>1 s 0 #s=a)soG (f) > G'(f2)
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From this and the right-hand continuity of G'(f) at 0, G’ is monotone strictly de-
creasing on [0, -1 / a). By hypothesis G'(0) = m log, e > 0. Therefore, from the
continuity of G'(f) on [0,-1/ a), G'(f) attains all values ¢ on the interval

lim G'(f) <t < G'(0) exactly once. Thus there is exactly one solution f* in
f2-1/a
(0,-1/a)iff lim G'(f) <O.
r7-1/a
The description of G (f) is now evident.

6. WARRANT HEDGING

We next apply the criterion of maximizing E log X,, to the warrant hedge described
in Part I. With the notation of Part I, and an assumed mix of 1, the gain X from a one
unit bet is

X=(sp-5 +wo)/(aaso+Bwo)s;=1,and
X=(wo+1-50)/(ouso+Pwg)s;>1.

We wish to maximize the exponential rate of growth G (f), given by G(f) =
Elog(14+fX).

It can be shown that the situation is essentially the same as in Theorem 8 and that
this depends on the a.s. boundedness of X ; we havein facta.s.sup X = (wo + 1-154) /
(aso + Bwy) and ass. inf X = — (59— wo) /(S + B wy). Thus f* can be com-
puted when the mix is 1, though the details are tedious.

When the mix is greater than 1, more serious difficulties appear. The payoff function
X has a.s. inf X = — o0 and a.s. sup X <C co. This means that, no matter what fraction
f > 0 of our unit capital is bet, there is positive probability of losing at least the entire
unit. Thus any bet is rejected! Yet this is unrealistic. We now find out what is wrong.

First, the assumption that arbitrarily large losses have positive probability of occur-
rence is not realistic. (a) The broker will automatically act to liquidate the position
before the equity is lost. (b) The strategies for investing in hedges automatically lead
to liquidating the position after the common is substantially above exercise price.

There is, then, a maximum imposed on X by practice but it is not easy in practice
to specify this maximum. Further, this maximum will, in general, be a random
variable (a.s. bounded, however) which is a function of the individual’s investment
strategy. It is not easy to determine the consequent probability distribution of s, yet
this is required to calculate E log (1 4 fX).

More generally, we might consider an individual’s lifetime sequence of bets of
various kinds. It is plausible to assume that X, = 0 only upon the death of the indivi-
dual, for although the individual may have no cash equity at a given instant, he does
have a cash “worth”, based on his future income, serendipity, etc., and this should be
included in X, This is true even of a (Billie Sol Estes) bettor who loses more than he
owns. The subtlety here, then, is that the accountant’s figure for net assets (plus or
minus) is not an accurate figure for X, as X, decreases below small positive amounts.

One can also object to X, at death being assigned the value 0, by arguing that the
chance of death in a time interval always has a small positive probability, thus making
E log X, = — oo always. Also, individuals when choosing between two alternatives
each involving a low probability of death generally do not meticulously select the
safer alternative (e.g., air travel versus train travel). Thus death should really be
treated as an event with a large but finite negative value.

Another common objection to E log X, as a measure of “utility” is that, like all
such measures which are not a.s. bounded, it allows the St. Petersburg paradox.
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The foregoing objections to E log X, only arise when we leave the case of finitely
many outcomes. We say that these are artificial technical difficulties which can all be
removed in the cases of practical importance. This may be tedious, as it is for the
warrant hedge, so we defer such matters for a subsequent paper.

7. PORTFOLIO SELECTION USING E LOG X

The Breiman results were obtained for repeated independent trials with finitely
many outcomes and finitely many ways to apportion our capital (amongst finitely
many betting sets). The results extend, as we have remarked, to independent trials
which are a mix of finitely many differently distributed trials (i.e., finitely many out-
comes and betting sets) provided that as n tends to infinity, the number of trials with
each distribution also tends to infinity.

There are significant real world situations, such as the selection and continuous
revision of a portfolio of securities, to which this extended theory does not generally
apply. A difficulty which we have already discussed is that it may be technically con-
venient to introduce continuously distributed and possibly unbounded payoffs, but
now generalized to the apportionment of capital among a finite number of alter-
natives, rather than just betting a fraction on one alternative. Another problem is that
the sequence of betting situations may change so that no two are ever the same.
Further difficulties arise when we consider the possible dependence of trials. Still
other problems appear when we consider that in the real world the spectrum of situa-
tions is changing continuously and that a potentially continuous portfolio revision is
part of an optimal approach. (Actually, because of the transactions costs which occur
in practice, portfolio revision is likely to occur in discrete steps.)

The extent to which Breiman’s conclusions for the finite case can be generalized in
these directions will be considered subsequently. For now we simply remark that the
possible generalizations promise to be adequate for the real world problems of port-
folio selection.

Assuming this to be the case, we shall see in the next section that economists and
others now have for the first time an accurate guide for portfolio selection and revision.

8. THE KELLY CRITERION AND DEFICIENCIES IN
THE MARKOWITZ THEORY OF PORTFOLIO SELECTION

How to apportion funds among investments has endlessly puzzled economists and
decision-makers. The literature was noted for its lack of instruction in such matters.
When Markowitz’ work on portfolio selection appeared, first in articles and later in
the monograph [18], it became the standard reference.

Markowitz considers situations in which there are r alternative and, in general
correlated, investments, with the gain per unit invested of X, . .., X,, respectively.
(It is so much more dignified to call bets investments; we shall try to remember to do
this in this section.) One of the investments is, of course, cash. The gain is given by
X, =0as.

To select a portfolio is to apportion our resources so that f; is placed in the ith
investment. Markowitz’ basic idea is that a portfolio is better if it has higher expecta-
tion and at least as small a variance or if it has at least as great an expectation and has
a lower variance. If two portfolios have the same expectation and variance, neither is
preferable. As the f; range over all possible admissible values, the set of portfolios is
generated. Typically the assumptions on the f;are £ f; = 1,and f; > Ofori=1,...,r.
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If a portfolio has the property that no other portfolio in the set is preferable, then
it is called efficient. Markowitz says that the investor should always choose an efficient
portfolio. Which efficient portfolio to choose depends on factors outside the theory,
such as the investor’s “needs”.

The Markowitz theory has the obvious deficiency that if E; and 67, i = 1, 2, are
the expectation and variance of portfolios 1 and 2, then if E; < E, and 67 < o3, the
theory cannot choose between the portfolios. Yet there are obvious instances where
“everyone” will choose the second portfolio over the first, such as when F,(x) <
F,( x) for all x. Specifically, let X; be distributed uniformly on [1, 3], let X, be uni-
formly distributed on [10, 100] and let X3 = 0 a.s. represent the possibility of holding
some of our resources in cash. Suppose X;, X,, and X; are independent. Then
EXfiX;=2f; + 55f,and 6 2f; X, = Zf?c? = f2/3 + 675f3. All cash, or f = 1,
is an efficient portfolio since this is the unique portfolio with zero expectation. The
portfolio f, = 1 also is efficient since this is the unique portfolio with greatest expecta-
tion. There are, in fact, infinitely many efficient portfolios. (They lie on a curve in the
f1, /> plane connecting (0, 0) and (0, 1).) The theory doesn’t tell us which is best,
yet f, = 1 is clearly preferable to any alternative.

In the case where there are the two alternatives X; = 0 a.s. (cash) and X, with
E, > 0 and 5, > 0, all portfolios are efficient and Markowitz’ theory gives no infor-
mation on which to choose. The Kelly criterion tells us to choose f, to maximize
Elog (1 + f,X,) and we know further from the theory of the Kelly criterion why
this choice is good. As we have seen, repeated trials of such an investment with f,
greater than the fraction f, will lead to ruin a.s.

Remark: This incompleteness of Markowitz’ theory is understandable since he only
uses probability information about first and second moments. We note though that
the examples he gives, and the real world applications, generally assume that more
detailed structure is known. Hence, it is reasonable that the criterion E log X,,, which
does use higher moment information, can provide a sharper theory.

Next consider those two-point probability distributions with masses m; located
at x;, i = 1, 2, and with mean and variance 1. These are indistinguishable by Marko~
witz’ criterion. A calculation shows, however, that for X; defined by x, = -1, x, =
3/2, m, = 1/5, m, = 4/5, the optimal fraction f5 is 4 and G (fT) is—(1/5) log 3 + (4/5)
log 2. For X, defined by x; = -2, x, = 4/3, m; = 1/10, m, = 9/10, we have fF = §
and G(fF) = -(1/10) log 4 + (9/10) log (3/2), which is smaller than G(f}).
Hence if X ; is the fortune after n repeated independent trials of an investor who
invests f{* in X, at each trial and X, , is the fortune after n trials of an investor who-
invests in any manner whatsoever in X, at each trial, we have lim X% ; / X, , = oo a.s.

As a final example, suppose we are to apportion our resources between the fore-
going X, and X,, which we now suppose to be independent, and cash, represented
by X;. We impose the constraints f; >0, i= 1,2, 3; f; + /. +/f3=1,and f; +
2 f, < 1. The latter constraint prevents investments where our losses exceed our total
resources. (The analysis and conclusion are essentially the same without this con-
straint.) The admissible portfolios are represented by the closed triangular region of
the positive quadrant bounded by the axes and the line f; + 2/, = 1.

We have EX f;X; = f; + f, and, because of the independence of X; and X,
o?Xf, X, = f? + f2 The efficient portfolios are the points of the f;, f, plane on the
two closed line segments joining (4, ) to (0, 0) and to (1, 0).

The function E log (1 + f1X; + £»X,) = G(f1,/2) is given by 50 G (f,/2) =
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36 log(1+3f1/2+4f/3) + 41log(1+3/f1/2-2f,) + 9 log(1-f; +
4+ 4f,/3) + log(1-f;-2f,). This function is undefined on the line joining
(0, 1/3) and (1, 0). It is defined and continuous elsewhere on the triangle of portfolios
and as (f;,/,) tends to the segment from this triangle, G (f;, f,) = — oo. It follows
(by the continuity) that G (f}, f,) attains an absolute maximum in the region of the
triangle where it is defined. We also know that any such maximum is positive. It
follows that, if an efficient portfolio maximizes G ( f1, f>), then it must be a portfolio
from the interior of the segment joining (0, 0) and (1/3, 1/3). Hence the coordinates
must simultaneously satisfy the equations 0 G (f,f;)/ 0f; = 0 and 9 G (f1,/3)/
9 f, = 0. (We note that in repeated independent trials where the investor selects an
efficient portfolio from the segment joining (1/3, 1/3) to (1, 0), he will be ruined with
probability one.)

Setting f; = f, = t in the equations 0 G/ 9 f; = 0 and @ G/ 9 f, = 0 and attempt-
ing to solve simultaneously yields, upon elimination between the two equations of the
last of the four fractions, the necessary condition —2796 + 376¢ + 111z = 0. Since
this is negative at # = 0 and ¢ = 1, there are no roots in the interval 0 < ¢ < 1/3.
Hence no efficient portfolio maximizes G ( f3, f>)-

We conclude that if X , is the fortune after n trials of a player who bets to maxi-
mize G(f},f,) on each trial, and X, , is the fortune of a player who chooses any
efficient portfolio on each trial, then lim X} ,/X, , = oo a.s. Furthermore, the
Kelly investor will reach a fixed goal x in less time, asymptotically as x — co, than a
Markowitz investor.

The Kelly criterion should replace the Markowitz criterion as the guide to port-
folio selection.
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RESUME

Mises optimales dans le cas de “jeux favorables”

Au cours de la derniére décade on a constaté que le joueur pouvait avoir ’avantage dans certains
jeux de hasard. On verra que le “blackjack”, la mise latérale au Baccara — tel qu’il est joué dans le
Névada — la roulette et la “roue de la fortune”, peuvent tous offrir au joueur une espérance de gain
positive. La Bourse a beaucoup de traits communs avec ces jeux de hasard [5]. Elle offre des situations
particuliéres avec des gains attendus allant au-deld d’un taux annuel de 259 [23].

Dés que la théorie particuliére d’un jeu a été utilisée pour identifier des situations favorables, se
pose le probléme de savoir comment répartir au mieux nos ressources. Parallélement 4 la découverte
de situations favorables dans certains jeux, les grandes lignes d’une théorie mathématique générale
pour exploiter ces opportunités s’est développée [2. 3. 10. 13.].

On décrira d’abord les jeux favorables mentionnés ci-dessus: ce sont ceux que I’auteur connait
le mieux. On discutera ensuite la théorie mathématique générale, telle qu’elle s’est développée jusqu’a
maintenant, et son application a ces jeux. Une connaissance détaillée d’un jeu particulier n’est pas
nécessaire pour suivre I’explication. Chaque discussion portant un jeu favorable dans la partie I est
suivie d’un résumé donnant les probabilités correspondantes. Ces résumés sont suffisants pour la
discussion de la partie II de sorte qu’un lecteur qui n’a aucun intérét dans un jeu particulier peut passer
directement au résumé.

Des références sont données pour ceux qui désirent étudier certains jeux en détail. Pour I'instant,
“jeu favorable” veut dire, jeu dans lequel la stratégie est telle que P (lim S, = ) > 0 ol S, est le
capital du joueur aprés n essais.



