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The Kelly Criterion and the Stock Market

Louis M. Rotando and Edward O. Thorp

The purpose of this expository note is to describe the Kelly criterion, a theory of
optimal resource apportionment during favorable gambling games, with special
attention to an application in the U.S. stock market.

By a “favorable game” we mean one in which there exists a strategy such that
Pr(lim,, ., X, = +%) > 0, where X,, is the player’s capital after n trials. We shall
first discuss the case of discrete binomial gambling games and then extend the
discussion to continuous gambling games.

BINOMIAL GAMES

COIN TOSSING. Imagine that we are faced with an infinitely wealthy opponent
who will wager even money bets made on repeatedly independent trials of a biased
coin. Further, suppose that on each trial our win probability is p > 1/2 and the
probability of losing is g = 1 — p. At the outset our initial capital is X, and the
primary problem is that of deciding what amount B; to bet on the ith trial.

A classical criterion is to choose B, for each i so that the expected value E(X,)
is a maximum after n trials. Letting T, = 1 if the kth trial is a win and T, = —1 if
itisaloss,then X, = X, _, + T\ B, fork = 1,2,3,..., and X, = X, + L} _,T, B,.
Then

E(X,) =X, + Y E(BT,) =X+ % (p - a)E(B,).
k=1 k=1

Since the game has a positive expectation, i.e., p — g > 0 in this even payoff
situation, then in order to maximize E(X,) we would want to maximize E(B,) at
each trial. Thus, to maximize expected gain we should bet all of our resources at
each trial. Thus B, = X, and if we win the first bet, B, = 2X,, etc. However, the
probability of ruin is given by 1 — p” and with 1/2 <p < 1, lim, _[1 —p"] =1
so ruin is almost sure. Thus the criterion of betting to maximize expected gain is a
fundamentally undesirable strategy.

Likewise, if we play to minimize the probability of eventual ruin (i.e., “ruin”
occurs if X, = 0 on the kth outcome) the well-known gambler’s ruin formula in [1]
can be used to show that we minimize ruin by making a minimum bet on each
trial; but this has the unfortunate concomitant that it also minimizes the expected
average gain. Thus “timid betting” is also unattractive.

Some intermediate strategy is required which is somewhere between maximizing
E(X,) (and assuring ruin) and minimizing the probability of ruin (and minimizing
E(X,)). An asymptotically optimal strategy was first proposed by J. L. Kelly in [2].
Much credit for this note goes-to L. Breiman who developed the theoretical
underpinnings for the validity of the Kelly system. E. O. Thorp applied the Kelly
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criterion to Casino Blackjack in [3], to other gambling games in [4], and to modern
portfolio theory in [5].

In the coin-tossing game just described, since the gambling probability and the
payoff at each bet are the same, it seems intuitively clear that an “optimal”
strategy will involve always wagering the same fraction f of your bankroll. To
make this possible we shall assume from here on that capital is infinitely divisible.
“Ruin” shall henceforth be reinterpreted to mean that for arbitrarily small positive
&, lim, ,,[Pr(X, < &)] = 1. Even in this sense, as we shall see, ruin can occur
under certain circumstances.

If we bet according to B; = fX;_;, where 0 < f < 1, this is sometimes called
“fixed fractional” betting in which we are always wagering the same percent-
age of our current resources. Where § and F are the number of successes and
failures, respectively, in n trials, then our capital after n trials is given by
X, =X,(1+)5U — f)f, where S + F=n. With f in the interval 0 < f < 1,
Pr(X, = 0) = 0. Thus “ruin” in the technical sense of the gambler’s ruin problem
cannot ever occur.

We note that since

1/n
enlog[%] _ Xn
0 )
XO

the quantity

X, S F
log[z] = logﬂl +f) + Py log(1 - f)

measures the exponential rate of increase per trial. Kelly-chose to maximize the
expected value ‘of the growth rate coefficient G(f), where

G(f) = {log[ ] } Slog(1+f)+—log(1—f)}

=plog(l +f) +qlog(l - f).
Note that G(f) = (1/n)E(log X,)) — (1/n)log X,, so for n fixed, maximizing G(f)
is the same as maximizing E log X,,. We usually will talk about maximizing G(f)
in the discussion below. Note that
a  p—-qa-f
7T T-7 T GEHa-F

G'(f) =

when f=f*=p —gq.
Calculation shows that

—f2+2f(p—q) -1
G'(f) = f f(pzzq) <0
(1-1%)
so that G'(f) is monotone strictly decreasing on [0, 1). Also, G'(0) =p —g > 0
and lim,_, ;- G'(f) = —. Therefore by the continuity of G'(f), G(f) has a
unique maximum at f = f* where G(f*) =plog p + qlog g + log2 > 0. More-
over, G(0) = 0 and lim;_,- G(f) = —o so there is a unique number f, >0,
where 0 < f* < f, < 1, such that G(f,) = 0. The nature of the function G(f) is
now apparent and a graph of G(f) versus f appears as shown in Figure 1.

1992] THE KELLY CRITERION AND THE STOCK MARKET 923



G(f)

Figure 1

The following theorem recounts the important advantages of maximizing G(f).
The details are omitted here but proofs of (i), (ii), (iii), and (vi) for the simple
binomial case can be found in [4]; more general proofs of these and of (iv) and (v)
are in [6].

Theorem 1. (i) If G(f) > 0, then lim, . X, = » almost surely, i.e., for each M,
Prlliminf, , X, > M]=1,

@) If G(f) <0, then lim,_, X, =0 almost surely; i.e., for each & >0,
Pr{limsup,, ., X, < el =1;

(iii) If G(f) = 0, then limsup, ., X, = « a.s. and liminf, ., X, = 0 a.s.

(iv) Given a strategy ®* which maximizes E log X, and any other “essentially
different” strategy ® (not necessarily a fixed fractional betting strategy), then
lim, _,, X,(®*)/X,(P) = » as.

(v) The expected time for the “running capital” X, to reach any fixed preassigned
goal X is, asymptotically, least with a strategy which maximizes E log X,,.

(vi) Suppose the return on one unit bet on the ith trial is the binomial random
variable Uj; further, suppose that the probability of success is p;, where (1/2) < p; <
1. Then E log X,, is maximized by choosing on each trial the fraction f* = p; — g,
which maximizes E log(1 + f,U).

Part (i) shows that, except for a finite number of terms, the player’s fortune X,
will exceed any fixed bound M when f is chosen in the interval (0, f,). But, if
f > f., part (ii) shows that ruin is almost sure. Part (iii) demonstrates that if f = f,,
X,, will (almost surely) oscillate randomly between 0 and + . Parts (iv) and (v)
show that the Kelly strategy of maximizing E log X, is asymptotically optimal by
two important criteria. Part (vi) establishes the validity of utilizing the Kelly
method of choosing f* on each trial (even if the probabilities change from one
trial to the next) in order to maximize E log X,,.
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Example 1. Player A plays against an infinitely wealthy adversary. Player 4 wins
even money on successive independent flips of a biased coin with a win probability
of p = .53 (no ties). Player A has an initial capital of X, and capital is infinitely
divisible. Applying Theorem 1(vi), f* =p —q = .53 — .47 = .06. Thus 6% of
current capital should be wagered on each play in order to cause X, to grow at the
fastest rate possible consistent with exactly zero probability of ever going broke. If
Player A continually bets a fraction smaller than 6%, X, will also grow to infinity
but the rate will be slower.

If Player A repeatedly bets a fraction larger than 6%, up to the value f., the
same thing applies. Solving the equation G(f) = .531log(1 + f) + .47 log(1 — f) =
0 numerically on a computer yields f, = .11973". So, if the fraction wagered is
above approximately 12% (up to 1), then even though Player 4 may temporarily
experience the pleasure of a faster win rate, eventual downward fluctuations will
occur that will inexorably drive the values of X, toward zero. Calculation yields a
growth coefficient of G(f*) = G(.06) = 0.016566* so that after n successive bets
the log of Player A’s average bankroll will tend to .016566x times as much money
as he started with.

The Kelly criterion can easily be extended to uneven payoff games. Suppose
player A wins b units for every unit wager. Further, suppose that on each trial the
win probability is p > 0 and pb — g > 0 so the game is advantageous to player A.
Methods similar to those already described can be used to maximize

G(f) = Elog(X,/X,) = plog(1 + bf) + qlog(1 - f).

Arguments using calculus yield f* = (bp — ¢q)/b, the optimal fraction of current
capital which should be wagered on each play in order to maximize the growth
coefficient G(f). '

A criticism sometimes applied to the Kelly strategy is that capital is not, in fact,
infinitely divisible. For any gambling game in the real world, no one ever uses
fractional amounts of money (for example) smaller than $0.01. Since bets are
always necessarily quantized, “ruin” in the sense we defined it, is possible. It is not
difficult to show, however, (see [7]) that if the minimum bet is small relative to the
gambler’s initial capital, then the probability of ruin is “negligible” and the theory
herein described is a useful approximation.

CONTINUOUS GAMBLING GAMES

Each investment in a succession of stock market “gambles” only has a finite
number of outcomes. But it is mathematically convenient to approximate a finite
distribution using a continuous distribution model. The added refinements and
hypotheses required are in one sense artificial generalizations of the discrete case
described thus far; the continuous model results must preserve the conclusions of
the discrete case. We, therefore, work to maximize E log(X,/X,) as before.

Example 2. An investor purchases a stock for $100 per share now, while the
anticipated price of the stock in one year is uniformly distributed on the interval
[30,200]. Inflation, broker’s fees, and tax considerations are omitted from this
discussion. The outcome per unit bet is described by dF(s) = U,(s) ds, where
A =[-7/10,1] and F is the associated probability distribution. We observe that
Uy(s) =10/17 for s € A and U(s) = 0 for s & A as shown in Figure 2.
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U(s)

Observe that the mean u = [L;,,0(10/17)s ds = +0.15. We now compute f*
and G(f*) assuming the stock is sold in one year. Note that we want to maximize
the integral

10
6() - [, st (5 @ (1)

This can be accomplished explicitly by solving G'(f ) = 0, where
10 sds 10 1 fsds
(=13 =(—)[
. 17 _.7/101 +fS 17f _.7/101 +fS

10 1 1 ds
(1—7?){[_7/10ds - f—7/101 +fS].

Setting G'(s) = 0 reduces to solving

71 | 1+f
07T
10

Calculation yields f* = 0.63*. Thus, consistent with our ability to continue to
make similarly advantageous bets in the future, we should wager 63% of current
capital. Integration of (1) yields G(f*) = 0.0472. Ruin is inevitable for f>117.

Under certain conditions it is possible that the maximum value of G(f) will
occur when f=f* > 1. For the same present stock price of $100 and without
further calculation, we see at once that if [30,200] — [65, 150], a scale change
from the interval —7/10 < s < 1 to the interval —7/20 <s < 1/2, then f*=
2(.63%) > 1 and the value of G(f*) remains 0.0472 as before.

But suppose, instead, that the stock price in one year was uniformly distributed
on the interval [70,150], with the current price $100 as before, then dF(s) =
U,(s) ds, where Uy(s) = 10/8 for s € 4 = [-3/10,5/10] and O for s & A. Then
the maximum value of the integral G(f) = (10/8)[%}%, log(1 + f5) ds occurs
when f* = 1.957; calculation yields a growth coefficient of G(f*) = 0.0956. Note
that the mean u = +0.10. Therefore, in this case we should be willing to buy on
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margin and wager up to 1.95 times current capital, consistent with our ability to
endure risk and our financial ability to cover later. Thus we have the interesting
finding that under certain conditions the mean of investment 4 may be higher
than the mean of investment B, but if the variability of investment B is sufficiently
small, then it may turn out that G(f¥) > G(f¥). The Kelly criterion would then
choose investment B as the superior gamble.

In the previous example, we need the following theorem in order to guarantee
that the integral G(f) = [ log(I + f5) dF(s) has a unique maximum at f = f*.
With — < a < 0, we define a = sup{s: F(—o, s) = 0}.

Theorem 2. If the mean u = [7sdF(s) > 0, then the function

G(f) = [ log(1 + f5) dF (s)
attains a unique maximum value G(f*) where f* € (0,— 1/a) iff
limy, _y,,-G'(f) <O0.

Proof: First note that if 1 + fa > 0, the integral G(f) = [Tlog(1 + f5) dF(s) is
defined. Also,

G"(f)_/ (1;;) dF(s) <0

so that

G " ar

(N =] 75576

is monotone strictly decreasing on [0,— 1/a). Observe .that G(0) = 0. Also
G'(0) = [7sdF(s) = >0 and lim;_, _, - G'(f) < 0 by hypothesis. From the

monotonicity and continuity of G'(f) on [0,— 1/a) it follows that G'(f) takes on

all values on the interval [G'(0), lim/_, , ,,,- G ( f)) exactly once and thus G(f) has

a unique maximum at f = f* where 0 < f* < —1/a.

Comment. Observe that if a - —o, then f* — 0 so that the Kelly criterion
applied to continuous distribution models will yield non-trivial results only if the
lower limit of the integral [log(1 + fs) dF(s) is finite.

AN APPLICATION TO THE U.S. STOCK MARKET

Investing in the stock market may be viewed as a continuous gambling game
with a positive, one-year expected return equal to the average of the historical
annual returns over a sufficiently long time span. Admittedly it is argumentative to
suggest that only stationary processes are involved. To a reasonable first approxi-
mation, however, there is evidence to suggest that price changes in speculative
markets behave like independent, identically distributed random variables with
finite variances (see [8]). From the Central Limit Theorem, it would then follow
that price changes in U.S. stocks are approximately normal (actually the lognormal
distribution would provide a superior fit, but the computations are much more
cumbersome to discuss here).

To an investor (i.e., “gambler”), what constitutes a profit over an extended
period of time is complicated by the time-varying purchasing power of money and
other factors such as brokerage commissions and taxes, as well as the perceived
risk that may be involved. Since time is very important, an actual annual percent-
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age return in the stock market has little meaning unless compared with the
inflation rate or some proxy such as 7-bill rates or money-market rates.

Historical annual excess returns (annual total returns on common stock in excess
of Treasury bill returns) have been found to be relatively stable and thus the
normal distribution is a reasonable approximation.

For the 59 year period from 1926 to 1984, the distribution of annual excess total
returns on S&P 500 “blue chip” stocks had a calculated mean p = 0.058 and
standard deviation o = 0.2160. (See [9].) Each “return” in the calculation was
expressed as the natural logarithm of one plus the annual excess return ER; in
formulas (2) and (3) below.

59 59 1/59
p=— 2 log(1+ER)=1log|]T(1+ ERl.)] ; (2)
59,3 i=1
59
Y [log(1 + ER;) — u]
o? =421 . (3)

58

(Note that expressing returns in this fashion has the advantage that the mean of
the natural logs is the continuously compounded geometric mean return.)

Various interesting probability calculations are possible if we assume that
annual excess returns are independently distributed. It would then follow, for
example, that the mean and standard deviation of an n-year forecast of annual
excess returns would be ¥ = 0.058 and s, = 0.2160/Vn. With 2 fixed amount
invested in stocks over an n-year period, the probability of a negative excess return
- would be

Pr

0 — .058 )
t < .

2160 /Vn
Some illustrations using various values of n are shown in Table 1 below. While
these illustrations do not relate directly to our eventual application of the Kelly

criterion, they do inform us of the relative risk characteristics of stocks vs. T-bills
over various periods of time.

TaBLE 1
Probability of
Number of years n negative excess return
2 .38
3 35
5 .29
10 21
15 .16
20 13
25 .10
30 .08
35 .06
40 .05

ESTIMATING THE KELLY CRITERION VALUE OF f* FOR LONG-TERM
INVESTMENT IN S &P 500 STOCKS

Suppose we have an initial amount of investment capital X, and we now want
to determine the optimal “wager-fraction” f* to invest each year in S &P 500
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stocks. Using an unaltered normal curve for our probability distribution is inade-
quate for two reasons: first, the normal distribution allows for unboundedly large
annual excess percentage declines /advances in stocks (unrealistic on both counts);
secondly, as inferred by the comment following the proof of Theorem 2, the Kelly
criterion will not yield a meaningful f* > 0 if the probability distribution F(s)
suggests a negatively infinite lower limit of the integral

[ los(1 + fs) dF (s).

For the above reasons we estimate using a quasi-normal probability distribution
N(s) with mean excess return u = .058 and o = .2160 as we had for the years
1926 to 1984. The distribution is described below in (4) and Figure 3. We define
the excess return variable s to be meaningful on the interval 4 <s < B, where
A=pu—-30=-059 and B = u + 30 = 0.706, the maximum permissible an-
nual excess percentage changes that are assumed may occur. There are two special
constants to be determined, « and A.

1

h+ e~Gmw/2et 4 <5< B
2
N(s) = V2ma (4)
07 S <A
0, s> B.
N(S)

A 0 u=.058 B

Figure 3

Calculations were accomplished on an Apple Ile microcomputer. All integra-
tions were approximated with Simpson’s Rule using # = 1000 and = =
3.1415926535. The value of k& had to be chosen so that [N(s)ds = 1 and we
found that A = (1 — .997006378)/(B — A) is the necessary correction term for
“chopping off the tails” from the standard normal curve. Simultaneously we also
wanted the probability distribution model in (4) to have a standard deviation of
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o = .2160 (to agree with the historical variance rate of excess return on stocks)
where o2 = [2s>N(s)ds — u®. To achieve this the value of the constant a was
numerically calculated to be a = .2183. With these adjustments, the distribution
N(s) has a mean of .058 and a standard deviation of .2160 as required.

We now want to find the value of f, where 0 < f < —1/A4, such that the
following integral is 4 maximum:

G(f) = fABlogu + fs) dN(s)

h +

_ /A *(log(1 + f5))

This time the integration that would be involved in setting G'(f) = 0 is non-ele-
mentary and cannot be done explicitly. Numerical work on a microcomputer was
performed and we found that the maximum value of G(f) occurs when f* = 1.17
and the growth coefficient G(f*) = .0350444711. The mean of the distribution is
positive. Also, differentiating G(f) with respect to f and examining the terms in
the integrand, we find that

= e~ (—w?/2e? | 4o 5

lim G'(f) = —o;
fo(=1/4)
so the uniqueness of f* is guaranteed by Theorem 2.

Thus, taking into account the time value of money (but neglecting transaction
fees and taxes), each year the Kelly-optimal investor should be willing to invest up
to 100% of his/her resources in a diversified portfolio of S &P 500 stocks if no
margin is permitted. But maximal average real growth will occur (should margin at
the T-bill rate be available) if one invests 117% times current resources. Thus the
long-term investor, each year, should be fully invested plus borrow to invest an
additional 17% above available resources so that continued investments will
achieve (asymptotically) maximal average growth relative to 7-bills. (In the real
world where margin costs exceed T-bill rates, if the extra costs are included in the
computations, this percentage would be somewhat less.)

" It would be interesting to know if G(f) = 0 on the interval (0,— 1/A) because
—if so—then we would have some idea of the “chaotic ruin point” f,, or the point
beyond which margin becomes excessive and thus leads to inevitable ruin (i.e., loss

relative to T-bills with a probability of 1). Direct examination of the limit

B
L= lim log(1 + fs)N(s) ds
, Jm fA (1 +fs)N(s)

is difficult, but we can obtain an upper bound. With

1
M = Max(N(s)) =h + on|A4,B],
(N(s)) =h + — on[4,5]
then
L< lim _ [(log(1+ fs))Mds
f=(=1/4)" "4

- .

=M lim s + = |log(1 + fs) —s)]

fo(=1/4)" f 4

B
=M[A - B+ (B —A)log(l - Z)] = —0.51 <0.
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Thus G(f) = 0 has a unique solution f, € (0,—1/4). Because the slope of the
curve G(f) versus f is very steep near —1/4, it becomes numerically difficult to
locate f. with great accuracy. Computer runs show this value to be very close to
~1/A; in fact, f, = 1.69*. Thus for a hypothetically immortal investor continually
wagering an amount greater than 1.7 times current resources, ruin is certain. Thus
excessive use of margin is undesirable.

Before dashing out to become fully invested in stocks for a year, for a lifetime,
or for all eternity, there are a few caveats that should be emphasized. Losses
(relative to T-bills) are possible over the short-term. The mathematically inclined
investor would do well to consider the tenable risks implied by Table 1 so that one
has some measure of the likelihood that over some finite period stocks will
underperform relatively “risk-free” T-bill earnings rates. The Kelly criterion does
not address this issue.

Finally, it can be argued that the somewhat artificially constructed probability
distribution N(s) may not be fully taking into account: (i) recent expanded stock
market volatility caused by program trading and the internationalization of finan-
cial markets, and /or (ii) some of the particularly disastrous exogenous events that
might occur (such as a cataclysmic earthquake or a massive global recession). The
numerical results we have obtained must be interpreted in light of the limitations
inherent in any applied probabilistic model.
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