Investment for the Long Run: New Evidence for an Old Rule

Harry M. Markowitz

The Journal of Finance, Vol. 31, No. 5. (Dec., 1976), pp. 1273-1286.

Stable URL:
http://links.jstor.org/sici?sici=0022-1082%28197612%2931%3A5%3C1273%3 AIFTLRN%3E2.0.CO%3B2-T

The Journal of Finance is currently published by American Finance Association.

Your use of the JISTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://uk.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have
obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://uk jstor.org/journals/afina.html.

Each copy of any part of a JISTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://uk jstor.org/
Sat Nov 18 20:02:48 2006



The fournal of FINANCE

VoL. XXXI DECEMBER 1976 No. 5

INVESTMENT FOR THE LONG RUN: NEW EVIDENCE FOR AN
OLD RULE

HARRY M. MARKOWITZ*

I. BACKGROUND

“INVESTMENT FOR THE LONG RUN,” as defined by Kelly [7], Latané [8] [9], Marko-
witz [10], and Breiman [1] [2], is concerned with a hypothetical investor who neither
consumes nor deposits new cash into his portfolio, but reinvests his portfolio each
period to achieve maximum growth of wealth over the indefinitely long run. (The
hypothetical investor is assumed to be not subject to taxes, commissions, illiquidi-
ties and indivisibilities.) In the long run, thus defined, a penny invested at 6.01% is
better—eventually becomes and stays greater—than a million dollars invested at
6%.

When returns are random, the consensus of the aforementioned authors is that
the investor for the long run should invest each period so as to maximize the
expected value of the logarithm of (1 +single period return). The early arguments
for this “maximum-expected-log” (MEL) rule are most easily illustrated if we
assume independent draws from the same probability distribution each period.
Starting with a wealth of W, after T periods the player’s wealth is

T
Wr=Wo IL(1+r) M
t=1
where r, is the return on the portfolio in period ¢. Thus

T
log(Wr/Wo)= % log(1+r,) )

If log(1+7r) has a finite mean and variance, the weak law of large numbers assues
us that for any ¢ >0
Prob(

iT.log( W/ Wo)— Elog(1+7) >e)—>0 ©)
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and the strong law' assures us that

lim L -log(W,/ W)= Elog(1+7) )
T—o0 T

with probability 1.0. Thus if Elog(1l+7r) for portfolio A exceeds that for portfolio
B, then the weak law assures us that, for sufficiently large 7, portfolio 4 has a
probability as close to unity as you please of doing better than B when time=T;
and the strong law assures us that

W4 /Wi—co  with probability one. )

Some authors have argued that the strategy which is optimal for the player for
the long run is also a good rule for some or all real investors. My own interest in
the subject stems from a different source. In tracing out the set of mean, variance
(E, V) efficient portfolios one passes through a portfolio which gives approximately
maximum Elog(1+7).2 I argued that this “Kelly-Latané” point should be consid-
ered the upper limit for conservative choice among E, V efficient portfolios, since
portfolios with higher (arithmetic) mean give greater short-run variability with less
return in the long run. A real investor might, however, perfer a smaller mean and
variance, giving up return in the long run for stability in the short run.

Samuelson [14] and [15] objected to MEL as the solution to the problem posed in
[11, 12), [7), [8], [9], [10]. Samuelson’s objection may be illustrated as follows:
suppose again that the same probability distributions of returns are available in
each of T periods, t=1,2,..., T. (Samuelson has also treated the case in which ¢ is
continuous; but his objections are asserted as well for the original discussion of
discrete time. The latter, discrete time, analysis is the subject of the present paper.)
Assume that the utility associated with a play of a game is

U=W$/a  a#0 (6)

where Wi is final wealth. Samuelson shows that, in order to maximize expected
utility for the game as a whole, the same portfolio should be chosen each period.
This always chosen portfolio is the one which maximizes single period

EU=E(1+71)%/a. )

Furthermore, if EUY is the expected return provided by this strategy for a T

1. In most cases the early literature on investment for the long run used the weak law of large
numbers. The results in Breiman [1], however, specialize to a strong law of large numbers in the
particular case of unchanging probability distributions. See also the Doob [4] reference cited by
Breiman.

2. Markowitz [10] Chapters 6 and 13 conjectures, and Young and Trent [16] confirm that
Elog(1+r)~log(1+E)~ - (V/(1+E)?)

for a wide class of actual ex post distributions of annual portfolio returns.
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period game, and EUT is that provided by MEL, usually we will have
EUY/EUt—0  as T-ow )

Thus, despite (3), (4) and (5), MEL does not appear to be asymptotically optimal
for this apparently reasonable class of games.

Von Newman and Morgenstern [17] have directly and indirectly persuaded
many, including Samuelson and myself, that, subject to certain caveats, the
expected utility maxim is the correct criterion for rational choice among risky
alternatives. Thus if it were true that the laws of large numbers implied the general
superiority of MEL, but utility analysis contradicted this conclusion, I am among
those who would accept the conclusions of utility analysis as the final authority.
But not every model involving “expected utility” is a valid formalization of the
subject purported to be analyzed. In particular I will argue that, on closer
examination, utility analysis supports rather than contradicts MEL as a quite
general solution to the problem of investment for the long run.

II. THE SEQUENCE OF GAMES

It is important to note that (8) is a result concerning a sequence of games. For fixed
T, say T=100, EU=EW {y/a is the expected utility (associated with a particular
strategy) of a game involving precisely 100 periods. For T=101, EW{, /a is the
expected utility of a game lasting precisely 101 periods; and so on for T
=102,103,....

That (8) is a statement about a sequence of games may be seen either from the
statement of the problem or from the method of solution. In Samuelson’s formula-
tion W, is final wealth—wealth at the end of the game. If we let T vary (as in
“T—00”") we are talking about games of varying length.

Viewed differently, imagine computing the solution by dynamic programming
starting from the last period and working in the direction of earlier periods. (Here
we may ignore the fact that essentially the same solution reemerges in each step of
the present dynamic program. Our problem here is not how to compute a solution
economically, but what problem is being solved). If we allow our dynamic pro-
gramming computer to run backwards in time for 100 periods, we arrive at the
optimum first move, and the expected utility for the game as a whole given any
initial W,, for a game that is to last 100 moves. If we allow the computer to
continue for an additional 100 periods we arrive at the optimum first move, and the
expected utility for the game as a whole given any initial W), for a game that is to
last for 200 moves; and so on for 7T'=201,202,....

In particular, equation (8) is not a proposition about a single game that lasts
forever. This particular point will be seen most clearly later in the paper when we
formalize the utility analysis of unending games.

To explore the asymptotic optimality of MEL, we will need some notation
concerning sequences of games in general. Let T, < T,<T;--- be a sequence of
strictly increasing positive integers. In this paper® we will denote by G|, G,, G5... a

3. A somewhat different, but equivalent, notation was used in [11].
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sequence of games, where the ith game lasts 7, moves. (In case the reader feels
uncomfortable with the notion of a sequence of games, as did at least one of our
colleges who read [11], perhaps the following remarks may help. The notion of a
sequence of games is similar to the notion of a sequence.of numbers, or a sequence
of functions, or a sequence of probability distributions. In each case there is a first
object (i.e., a first number or function or distribution or game) which we may
denote as G,; a second object (number, function, distribution, game) which we may
denote by G,; etc.). ‘

In general we will not necessarily assume that the same opportunities are
available in each of the T; periods of the game G,. We will always assume that—as
part of the rules that govern G,—the game G, is to last exactly T, periods, and that
the investor is to reinvest his entire wealth (without commissions, etc.) in each of
the T, periods. Beyond this, specific assumptions are made in specific analyses.

In addition to a sequence of games, we shall speak of a sequence of strategies
51,8y, 53,... where s; is a strategy (i.e., a complete rule of action) which is valid for
(may be followed in) the game G, By convention, we treat the utility function as
part of the specification of the rules of the game. The rules of G, and the strategy s,
together imply an expected utility to playing that game in that manner.

III. ALTERNATE SEQUENCE-OF-GAMES FORMALIZATIONS

Let g equal the rate of return achieved during a play of the game G;; i.e., writing T
for T;:

Wr=Wy (1+g)" ®
or
g=(Wr/Wo)"/T-1. (10)
In the Samuelson sequence of games, here denoted by G,, G,, Gs,..., the utility
function of each game G, was assumed to be
U=f(W;)=W4/a. (11)
We can imagine another sequence of games—call them H,, H,, H,,...—which
have the same number of moves and the same opportunities per move as
Gy, Gy, Gy,..., respectively, but have a different utility function. Specifically im-
agine that the utility associated with a play of each game H, is
U=V(g). (11a)

for some increasing function of g. For a fixed game of length 7=T, we can always
find a function V(g) which gives the same rankings of strategies as does some
specific {W7). For example, for fixed T (11) associates the same U to each
possible play as does

U=V(g)=W§ (1+g)7/a. (11b)
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Thus for a given T it is of no consequence whether we assume that utility is a
function of final wealth W, or of rate of return g.

On the other hand, the assumption that some utility function ¥{(g) remains
constant in a sequence of games, as in H,, H,, H;,... has quite different con-
sequences than the assumption that some utility function f(W;) remains constant
as in G,, G,,.... Markowitz [11] shows that if ¥{(g) is continuous then

EVE/EVS—1  as T-w (12a)

where EV% is the expected utility provided by the MEL strategy for the game H,
and EVY is the expected utility provided by the optimum strategy (if such an
optimum exists*); and if ¥{(g) is discontinuous then

EVL/EVS>1-¢—8 (12b)

where 8 is the largest jump in V at a point of discontinuity, and e—0 as T—co.
(12a) and (12b) do not require the assumption that the same probability distribu-
tions are available each period. It is sufficient to assume that the return r is
bounded by two extremes r and 7:

—~1<r<r<i<co (13)

e.g., the investor is assumed to not lose more than, say, 99.99% nor make more than
a million percent on any one move in any play of any game of the sequence. Note
also that ¥(g) is not required to be concave, nor strictly increasing nor differenti-
able; but of course it is allowed to be such.

Thus under quite general assumptions, if ¥(g) is continuous MEL is asymptoti-
cally optimal in the sense of 12a. If ¥( g) has small discontinuities, then MEL may
possibly fail to be asymptotically optimal by small amounts as in 12b. These results
are in contrast to (8), derived on the assumption of constant U=f(W).

In [11] I argued that the assumption of constant ¥{( g) in a sequence of games is a
more reasonable formalization of “investment for the long run” than is the
assumption of constant U(W ;). Given the basic assumptions of utility analysis, the
choice between constant ¥( g) and constant U(W7) is equivalent to deciding which
of two types of questions would be more reasonable to ask (or determine from
revealed preferences) of a rational player who invests for the long run in the sense
under discussion.

Example of question of type I: what probability would make you indifferent
between (a) a strategy which yields 6% with certainty in the long run: and (b) a
strategy with a probability « of yielding 9% in the long run versus a probability of
1 —a of yielding 3% in the long run.

Example of question of type II: if your initial wealth is $10,000.00, what

4. The assumptions of [11] do not necessarily imply that an optimum strategy exists. In any case (12a)
and (12b) apply to any “other” strategy such that

EV$>EVL forall T.
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probability 8 would make you indifferent between (a) a strategy which yields
$20,000 with certainty in the long run, versus (b) a strategy which yields §25,000
with probability 8 and $15,000 with probability (1 — 8) in the long run.

Question I has meaning if constant ¥(g) is assumed; question II if constant
U(Wp) is assumed. It seemed to me (and still does) that preferences among
probability distributions involving, e.g., 3%, 6% or 9% return in the indefinitely long
run are more reasonable to assume than preferences among probability distribu-
tions involving a final wealth of, e.g., $10,000, $15,000 or $20,000 in the long run. I
will not try to further argue the case for constant V(g) as opposed to constant
U(W7y) at this point, other than to encourage the reader to ask himself questions of
type I and type II to judge.

In [11] I also argued that even if we were to assume constant U(W ) rather than
constant V{(g), we would have to assume that U was bounded (from above and
below) in order to avoid paradoxes like those of Bernoulli [3] and Menger [13]. I
then show that MEL is asymptotically optional for bounded U(W ;). Merton and
Samuelson [12] and Goldman [6] object to my definition of asymptotic optimality,
although it is essentially the same as the criteria by which we judge, e.g. a statistic
to be asymptotically efficient. Merton and Samuelson proposed, and Goldman
adopted, an alternative criterion in terms of the “bribe” required to make a given
strategy as good as the optimum strategy. But this bribe criteria seems to me
unacceptable, since it violates a basic tenant of game theory—that the normalized
form of a game (as described in [17]) is all that is needed for the comparison of
strategies. It is not possible to infer the Samuelson-Merton-Goldman bribe from
the normalized form of a game. Strategies Ia and Ib in game I may have the same
expected utilities, respectively, as strategies ITa and IIb in game II; but a different
bribe may be required to make Ia indifferent to Ib than is required to make Ila
indifferent to IIb. Strategies IIla and IIIb in a third game (not necessarily an
investment game) may have the same pair of expected utilities as Ia and Ib in game
I, or Ila and IIb in game II, but the notion of a bribe may have no meaning
whatsoever in game III.° Thus unless we are prepared to reject the equivalence
between the normalized and extensive form of a game in evaluating strategies, we
must reject the Merton-Samuelson-Goldman bribe as part of a precise, formal
definition of asymptotic optimality.

5. For example, suppose that strategy (a) has EU,=0 and strategy (b) has EU,= 1. What bribe will
make (a) as good as (b)? Consider the answer, e.g., for one period games I and II in which (a) accepts
W=} with certainty and (b) elects a 50-50 chance of W=0 versus W=1. In (I) suppose

0 for Wkt
={10%(W-1}) for 0.5<W<06
1 wW=>0.6

while in II suppose

0 for W<09
U={ 108(W-0.9) 09<WwW<1.0
1 W>1.0

In game I, (a) requires a bribe of 0.05; in game II (a) requires 0.45.
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IV. UNENDING GAMES

Even if we agree that a player playing a fixed finite game should maximize
expected utility, we cannot determine whether MEL is asymptotically optimal for a
given sequence of games {G;} unless we can agree on criteria for asymptotic
optimality. What is needed is either “metacriteria” regarding how to choose criteria
of asymptotic optimality, or else an alternate method of analyzing the desirability
of strategies for the long run. This section presents such an alternate method,
namely the utility analysis of unending games.

Consider a game G, which is like one of the games G; described above with this
one exception: the game G, never terminates. Instead of having a first move, a
second move, and so on through a 7;ith move, we have an unending sequence of
moves. As with a game G, a strategy for a G, is a rule specifying the choice of
portfolio at each time ¢ as a function of the information available at that time. The
only difference is that now the rule is defined for each positive integer t=1,2,3,...
rather than only for 1<¢< 7.

Given a particular game G, and a strategy (s), a play of the game involves an
infinite sequence of “spins of the wheel” and results in an infinite sequence of
wealths at each time:

(Woy Wos Way ., Wiy..) (14)

where W, is initial wealth, and
W,=W}_ (1 +return at time ¢) (15)
as in G,

The reader should find it no more unthinkable to imagine an infinite sequence of
spins than to imagine drawing a uniformly distributed random variable. For
example, if the same wheel is to be spun each time in an unending game, and if this
wheel has ten equally probable stopping points, which we may label 0 through 9,
then the infinite decimal expansion of a uniform [0,1] random variable may be
taken as the infinite sequence of random stopping points of the wheel.® If the wheel
has sixteen stopping points, then the hexadecimal expansion of the random number
may be used. In either case the infinite sequence of wealths (W, W, W,,...) is
implied by the rules of the game, the player’s strategy, and the uniform random
number drawn.

In general, a given G and a given strategy imply a probability distribution of
wealth-sequences (W, Wy, W,,...).

Since G, has no “last period”, we cannot speak of “final wealth”. We can,
however, assume that the player has preferences among alternate wealth-sequences:
e.g., he may prefer the sequence of passbook entries provided by a savings account
which compounds his money at 6%, starting with W, to one that compounds it at
3%. Given any two sequences:

We=(Wy, Wi, W3,...)

6. The fact that some numbers have two decimal expansions, like 0.4999... versus 0.5000..., may be
resolved in any manner without effect on the analysis; since such numbers occur with zero probability.
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and
Wh=(W, Wi Ww5,...)

we may assume that the player either prefers W< to W%, or W% to W*° or is
indifferent. Further, we may assume that given a choice between any two probabil-
ity distributions among sequences of wealth

Pry(Wo, Wy, W)
versus
Pry(Wo, W, W,...)

he either prefers probability distribution 4 to B, or B to A, or is indifferent
between the two probability distributions.

We shall not only assume that the player has such preferences, but also that he
maximizes expected utility. In other words, we assume that he attaches a (finite)
number

U(Wo W, W)

to each sequence of wealths, and chooses among alternate strategies so as to
maximize EU. ,

The only additional assumption we make about the utility function U(...), is
this:

If the sequence W*=(W,, W{, W$,...) eventually pulls even with, and then stays
even with or ahead of the sequence

Wh=(Wo, W3, W3,...)
then W is at least as good as W?; i.e., if there exists a 7 such that
we> wb fort>T (16)

then U(W*?) > U(W?). This assumption expresses the basic notion that, in the sense
that we have used the terms throughout this controversy, if player 4 eventually gets
and stays ahead of player B (or at least stays even with him) then player 4 has
done at least as well as player B “in the long run”.

At first it may seem appropriate to make a stronger assumption that if W¢
eventually pulls ahead of W?, and stays ahead, then the sequence W* is preferable
to the sequence W In other words, if there is a T such that

we> Wf’ fort>T (16a)
then

U(wey> Uu(wb).



Investment for the Long Run: New Evidence for an Old Rule 1281

As shown in the footnote’, this stronger assumption is too strong in that no
utility function U(W,, W, W,,...) can have this property. Utility functions can
however have the weaker requirement in (16).

The analysis of unending games is particularly easy if we assume that the same
opportunities are available at each move, and that we only consider strategies
which select the same probability distribution of returns each period. We shall
make these assumptions at this point. Later we will summarize more general results
derived in the appendix to this paper.

Without further loss of generality we will confine our discussion to just two
strategies, namely, MEL and any other strategy, and will consider when the
expected utility supplied by MEL is at least as great as that supplied by the other
strategy. Letting W> and W? be the wealth at 7 for a particular play of the game
using MEL or the other strategy, respectively,

U(Wo Wi, W5,...) > U(W,, we, Wg,...) a7
is implied if there is a T such that

WE> WO fort>T. (18)

7. If U orders all sequences W=(Wgy, W), W,,...) in a manner consistent with (16a), then in
particular it orders sequences of the form

Wo—given
W, —any positive number (N.1)
W,=(1+a)W,_, fort>2;a>—1.

Since this family of sequences depends only on W, and «, we may here write
V(Wy,a) = U(Wo, Wy, Wa,...). (N.2)
Then (16a) requires
V(W4,a?)> V(W2 a®)  if either a?>a® or

A_ B

at=qa and Wi > w3, (N.3)

For any a let
Uow(@) =GLBV(W,, ) (N4)

Ut(a)=LUB V(W a).
Then (N.3) implies
Uow(a) < UM(a)  for every a (N.5a)
as well as
Uw(a?) > Uti(a®?)  if a4>a®. (N.5b)
But (N.5b) implies that we can have U,,,(«)< U"(a) for at most a countable number of values of a,

since at most a countable number of values of « can have U bita)— Upou(@) > 1/N for N=1,2,3,.... But
this contradicts (N.5a).
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Equation (2) implies that we have WX > W? if and only if

1 t 1 t
n § log(1+rf)> n i§l log(1 +r?) (19)
Thus (18) will hold in any play of the game in which there exists a T such that
t
—i— 2 log(1+rF)>— E log(1+r))  forall>T. (20)
Or, if we let
yi=log(1+r) @D

(20) may be written as

t
%2 y,.L>} S0 fort>T. 22)

i=1 i=1
Under the present simplified assumptions
Ey* > E)° (23)

by definition of MEL. But for random variables y,,y,,... with identical distribu-
tions and with (finite) expected value u, we have

im — E (yi—w)=0 24)

t—>o0 [

except for a set of probability measure zero. In other words

i + 3 - 25)

t—>oo t

except for a set of sequences which have (in total) zero probability of occurrence
(cf. the strong law of large numbers in [4] or [5]). But (23) and (25) imply (as a
simple corollary of the definition of the limit of sequence) that there exists T such
that

t
IIALS N fore>T (26)

except on a set of probability zero; hence (17) holds except on a set of measure
zero. Since

EU= [U(Wo W,...)dP(Wo, W), ...) @7

is not affected by arbitrarily changing the value of U on a set of measure zero, we
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have
EU( W, W’f, W{“,...) > EU( W, W‘,’, Wg,...). (28)

Thus, given our simplifying assumption of an unchanging probability distribu-
tion of returns for a given strategy, the superiority of MEL follows quite generally.

The case in which opportunities change from period to period and, whether or
not opportunities change, strategies may select different distributions at different
times, is treated in the appendix. It is shown there that if a certain continuity
condition holds, then MEL is optimal quite generally. If this continuity condition
does not hold, however, then there can exist games for which MEL is not optimal.

In this respect the results for the unending game are similar to those for the
sequence of games with constant V(g). In the latter case we found that MEL was
asymptotically optimal for the sequence of games if V(g) was continuous, but
could fail to be so if ¥(g) was discontinuous. In the case of the unending game, the
theorem is not concerned with asymptotic optimality in a sequence of games, but
optimality for a single game. Given a particular continuity condition, MEL is the
optimum strategy.

V. CONCLUSIONS

The analysis of investment for the long run in terms of the weak law of large
numbers, Breiman’s strong law analysis, and the utility analysis of unending games
presented here each imply the superiority of MEL under broad assumptions for the
hypothetical investor of [1], [2], [7], [8], [9], [10]. The acceptance or rejection of a
similar conclusion for the sequence-of-games formalization depends on the defini-
tion of asymptotic optimality. For example, if constant ¥{(g) rather than constant
U(W ) is assumed, as this writer believed plausible on a priori grounds, then the
conclusion of the asymptotic analysis is approximately the same (even in terms of
where MEL fails) as those of the unending game.

I conclude, therefore, that a portfolio analyst should not be faulted for warning
an investor against choosing E, V efficient portfolios with higher E and V but
smaller Elog(l+ R), perhaps not even presenting that part of the E, V' curve which
lies above the point with approximate maximum Elog(l + R), on the grounds that
such higher E, V combinations have greater variability in the short run and less
“return in the long run”.

APPENDIX

Using the notation of footnote 7, we will show that if U, (a)=U"(a) for all «
then MEL is an optimum strategy quite generally; whereas, if U"(a)> U, ,(e) for
some «, then a game can be constructed in which MEL is not optimum.
U,(@)=UM(a) for all « is the “continuity condition” referred to in the text.

For v=L or 0, indicating the MEL strategy or some other strategy, respectively,
we define

yi=L’+u (29)



1284 The Journal of Finance

where
=E{y}|Ly,L3,...,L> ,,uS,u5,...,u;_,} (30)
is the expected value of y! given the events prior to time z. From this follows
E{u}|L},...,u}.,}=0. @31)

The u} (for a given v) are thus what Doob [4] refers to as “orthogonal” random
variables, and Feller [5] calls “completely fair” random variables. Therefore,
writing var for variance,

§ var(u") <o 32)

n=1

implies

X |-

n
> u?  converges to 0 almost always. (33)
=

(In particular, (32) holds if the var(u},) are bounded.) In addition to now assuming
condition (32) we will also assume that the game is such that

lim — 2 LE  exists almost always. (3%

n—o n =

This is the case, for example, when the same distributions are available each time,
whether or not “the other” strategy uses a constant distribution. Since L’ > L?
always, we have

n n n
fim 1 > LEi=1im supl > LE>1lim supl LY always. (3%5)
"omia " niz1 " mi=1
Thus when (32) holds we have
hm 2 yi>lim sup— 2 »?  almost always. (36)

In general,
a=lmsup> 3y implies  UM()> UWu Wi W5.);  (37)

(since there always exists another series y§, y¥,... such that

and

n n
%Zy}'?-rl; >y - foralln;
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hence
UM (a) > U(Wo, WE, W3,...) > U(Uy, W3, WS3,...)).

If we now add to the assumptions expressed in equations (32) and (34), the
assumption that UM(a)= U, (@) for all a, we get directly from (36) and (37) that

EU* > EU°.

Conversely, the following is an example in which UM(ag)> U,,,(ay) and which
MEL is not optimum: let Wy=1 and suppose that for some fixed positive o we
have U(1,0.5,0.5(1 + &),0.5(1+a)?,...) equals

U(L(1+a),(1+a)’,(1+a)’,...) <U(1,15,1.5(1 +a), L.5(1 +a)?,...).

With such a U-function it would be better to take a 50-50 chance of W;=0.5 or 1.5
followed by W,=(1+a)W,_,,t>2, rather than have W,=(1+a)-W,_, with
certainty for > 1,....

While the above shows that MEL can fail to be optimal when U"(a)> U, (a)
for some a, recall that we can have U™(a)> U, (a) for at most a countable
number of values of a. Thus MEL is optimal in a game in which

1 n
a=li’rln; > LE

i=1

has a continuous distribution, or in which « has a discrete or mixed distribution
but in which none of the points of discontinuity of the cumulative probability
distribution of & have U™(a)> U, ().
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