Different Measures of Win Rate for Optimal Proportional Betting

Peter A. Griffin
Management Science, Vol. 30, No. 12. (Dec., 1984), pp. 1540-1547.

Stable URL:
http://links.jstor.org/sici?sici=0025-1909%28198412%2930%3 A12%3C1540%3ADMOWRF%3E2.0.CO%3B2-Y

Management Science is currently published by INFORMS.

Your use of the JISTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://uk.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have
obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://uk jstor.org/journals/informs.html.

Each copy of any part of a JISTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://uk jstor.org/
Sun Nov 19 07:36:39 2006



MANAGEMENT SCIENCE
Vol. 30, No. 12, December 1984
Printed in U.S.A.

DIFFERENT MEASURES OF WIN RATE FOR OPTIMAL
PROPORTIONAL BETTING*

PETER A. GRIFFIN
Department of Mathematics and Statistics, California State University, Sacramento,
California 95819

It is well known that all betting systems applied to independent, repeated, and identically
distributed trials will result in the same expected gain per average unit wagered as that which
applies to a single trial. This paper develops the asymptotic and paradoxical manner in which
that constant win rate is maintained for optimal proportional betting according to the Kelly
criterion. The appropriateness of using this traditional measure of win rate for proportional
betting is contrasted with that of various alternatives.

(BETTING SYSTEMS; KELLY CRITERION)

1. Introduction

In the classical formulation of proportional betting, the gambler wagers a fixed
fraction, f, of his current capital on a sequence of independent coin tosses. Letting F,
be his fortune after n trials (for convenience F, = 1), then F, = [T7_,(1 + fX,), where
the X; are independent and identically distributed: X, =1 and —1 with respective
probabilities p > 1/2 and 1 — p. The gambler’s return on investment, net gain divided
by total bet, is represented by

n—1
R,=(F,-1)/f> F,.
k=0
When Elog(1l + fX) >0 (and Fn&) + o0), Ethier and Tavare (1983) show
D [eo}
R,——R=1/f3 (1/F,), with PO<R<I1l)=1, (1)
k=1
ER < EX,, and : ()

D s .
R,|A,— R where A4, , the conditioning event, consists of
all sequences with exactly [ np] wins in the n trials. 3)

The “exponential rate of growth” is defined as G(f) = Elog(l + fX,) and satisfies

FY n 35, 66D, Since it is natural to imagine F, increasing due to multiplication
rather than addition, e provides a measure of the rate of increase of capital' on a
single trial (Thorp 1969). The choice f=2p — 1= EX, (for which G(f)=f*>/2+
f4/124 - + f*/2k(2k — 1) ... is positive) maximizes G and results in a betting
system possessing a variety of optimal properties (Kelly 1956, Breiman 1961, and
Finkelstein and Whitley 1981). Ethier and Tavare show further that when the gambler
bets this optimal fraction (commonly called using “the Kelly system” or “optimal
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proportional betting”) and p—>1/2* (f—0), then

R/f=R/EX, L) exponential (2) with density g(y) =2e~?, and 4
ER/EX,>1/2. (5)

These limiting results generalize to games having payoffs other than +1 or —1 and are
of particular interest since most realistic examples of proportional betting are not likely
to involve large advantages.

At first glance (2) and (5) appear to contradict Epstein’s (1977) Theorem I, p. 53: “If
a gambler risks a finite capital over a large number of plays in a game with constant
single-trial probability of winning, losing, and tying, then any and all betting schemes lead
ultimately to the same value of mathematical expectation of gain per unit amount
wagered.” The confusion results if one fails to distinguish Epstein’s interest, namely
E(Win)/ E(Bet), the average win divided by the average bet, from Ethier and Tavare’s,
which involves E(Win/Bet), the average of individual win rates. Our purpose is to
clarify and discuss these two possible measures of win rate and then to illustrate the
rather peculiar manner in which E(Win)/ E(Bet) maintains its constant value of
f= EX,;=2p—1 as time unfolds.

2. E(Win)/ E(Bet) and E(Win/Bet), How Do They Differ?

We digress from the topic of proportional betting to consider a gambler who
possesses three dollars and has the specific goal of winning one dollar at the
unfavorable game of casino craps (p = 244/495, Epstein). Dubins and Savage (1965)
show that such a gambler’s optimal strategy is the familiar “double up if you lose”
martingale which will result in three possible sequences of wins(W) and losses(L) as
follows:

Total Win Total Bet Win/Bet Probability
w 1 1 1/1 p =0.4929
LW 1 3 1/3 (1 - p)p =0.2500
LL -3 3 -3/3 (1—p)P?=02571

In summary, E(Win)= —0.0285, E(Bet)=2.0141, E(Win/Bet) =0.3191, while
E(Win)/ E(Bet) = —0.0141 = EX, where X is the result of a unit bet at craps. This
example not only illustrates Epstein’s Theorem I, but also shows that E(Win/Bet)
need not even have the same algebraic sign as £X in some instances.

Indeed if we imagine thousands of such gamblers each initially capitalized with
three dollars and desiring to win one dollar at an obliging casino offering craps, we can
articulate the distinction between the two measures of win rate. We ask each of the
gamblers, after they exit from the casino, to write down on a piece of paper their
individual win rates, either 1/1, 1/3, or —3/3. When we average the fractions on
these pieces of paper, the result will approximate £(Win/Bet) = 0.3191. On the other
hand, if we asked the silver dollars which were bet what happened to them, their
collective response would be “We lost, and at about the expected rate.” This would be
reflected by the sum of the numerators on the pieces of paper divided by the sum of
the denominators approximating £X = —0.0141.

Thus E(Win/Bet) quantifies how, on average, individuals perceive their win rates.
E(Win)/ E(Bet) shows us in what direction and how fast the money is flowing. .

One of the appeals of E(Win)/ E(Bet) as a measure of win rate is that it provides an
almost sure limit for the return on investment for either an individual or group of
individuals who repeatedly apply any betting scheme to necessarily terminating and
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independent sequences of trials for which E(Bet) is finite. However, returning to our
main interest of the Kelly system, we observe that a proportional bettor is hypothe-
sized to gamble forever without starting over, and thus does not repeat betting
sequences which come to an end. This suggests that £(Win)/ E(Bet) may not be an
appropriate measure for the individual gambler in this case.

The temptation to resort to E(R) as an alternative measure must be tempered, as the
individual R, sample paths do not converge at all:

P(lim R, exists) = 0. (6)

To prove this, suppose, as occurs infinitely often, the nth trial results in a loss and
F,_, > 1. Then (6) follows from

n—2 n—1
R,/R,_i=((1—-f)F,_,— l)kgoFk/(Fn—l - l)kgoFk< 1-f,

since (1) excludes zero as a possible limit. Although E(R) will be the average of a
solitary gambler’s varying win rates in the long run, he in no sense maintains or
approaches this value. What happens is that amounts gained and wagered within fixed,
albeit lengthy, periods in the future continue to overwhelm the totals of his entire
previous history. Subsequent values of R,, if spaced sufficiently far apart, behave like
almost independent observations from the distribution of R.

The preceding remarks suggest an efficient method of simulating the behavior of R.
Instead of using mn random numbers to produce only m observations of R, and
trusting n to be sufficiently large, record all of the consecutive win rates of just one
gambler. Provided that observation is begun after F, has grown enough to dominate
completely the —1 in the numerator of R,, the Markovian nature of R,F,/(F, — 1)
(which has the same limiting distribution as R,) will assert itself and produce a
time-homogeneous Markov process governed by the transition function

P(x,C)=ple((1 + f)x/(1+ fx)) + (1 = p)lc((1 = f)x/(1 + fx)),

where 1. is the indicator function for the set C.

The shapes displayed in Figure 1 were obtained from a million observations each for
three cases:

A: p=0., f=04, with estimates of ER = 0.22 and ER? = 0.09;

B: p=0.8, f=0.6, with estimates of ER = 0.38 and ER? = 0.24; and

C: p=0.9, f=0.8, with estimates of ER = 0.60 and ER? = 0.50.

Surprisingly, the exponential distribution of (4) fits the p = 0.7 data reasonably well.
But when p is larger we begin to see a pronounced tendency for win rates to cluster
near 1, only to be jerked back to about (1 — f)/(1 + f) by the occurrence of a loss, and
then to begin migrating back toward 1 again.

Any interpretation of E(Win)/ E(Bet) for proportional betting requires the context
of the collective win rate of many individual gamblers, each embarked on separate,
independent, optimal odysseys, but playing the same game (same p, f=2p — 1). It is
not difficult to confirm the invariance of E(Win)/ E(Bet) after any finite number of
trials. Independence of the X; gives E(F,) = (1 + f?)", from which follow E(fS%_0F,)
=((1 + %" — 1)/f and consequently

n—1

E(Win)/ E(Bet) = E(F, — 1)/E(f2 Fk) = f= EX,. ™)
k=0

Wong (1981), who first raised the question of how proportional betting affects win
rate, prophesied that a disproportionate contribution to this constant win rate would
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FIGURE 1. Sample histograms illustrating the shape of Ethier’s R for selected values of p and optimal
betting fractions f= 2p — 1. Possible values of R occur on the horizontal scale in intervals of width 0.02.

come from the sequences consisting of an inordinately large number of wins. That this
is the case we shall now see.

3. Conditioning £(Win)/ E(Bet) on a Fixed Sample Proportion

Let E, , stand for conditional expectation given the event of precisely np’ wins in n
trials. The conditional expected amounts won and bet are

W,y=E, (F,—1)=(+f)"(1—-f)""" -1 and

n—1
B,,=E, ,p,( szo F, ), respectively.

If py is the solution to (1 + f)P(1 — f)! 77 = 1, it also satisfies W, , =0 and has the
interpretation of being the sample proportion which results in no change in fortune at
all for the proportional bettor. (If p~1/2, po~p/2 + 1/4.) The main result is now
established that, when p’ > p,,

limsup W, /B, , < Q(p, p’) = max( ?T"P—P%pp'- ,0). 8
(Values of n are restricted by the requirement that np’ be integral.)

The method of proof relies upon the observation that the amount of money won by
proportional bettors winning np’ games in n trials, F, — 1, is necessarily constant and
equal to W, , regardless of which of the sequences of results we examine. Only the
amount of money bet is variable, depending upon the order in which the wins and
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losses occur. Hence, when p’ > p,,
n—1
W,,,p,/Bn,p, = l/En,p,(sz0 F./(F, - 1)). )

Now, we temporarily change perspective and assume p’ as the true probability of
success, in which case the fraction of money bet, f=2p — 1, may not be the optimal
fraction for p’. We regard the expectation on the right-hand side of (9) as E(1/R, | 4,),
where A, is the event that there are np’ wins in the » trials. Since R, | 4, is nonnegative
and, by (3), converges in distribution to R, 1/R, | 4, converges to 1/R.

By Billingsley (1968, (5.3)),

liminf E(1/R,|A,) > E(1/R). (10)
Evaluating the right-hand side of (10),

i=

0 0 k 0
E1/R) =13 E/R) =3 E( L0/ + ) =/ S (/0 + o))

E(1/(L+ X)) =p//(1+ )+ (1 =p)/(1-f)=(1-f2p' - 1)/(1-f) <1
iff p” > p, and therefore

E(1/R)=+o0 if p’<p,
p +p—2pp .

=L P79 i >

7 —p pr>p

Thus (8) is established.
Note that

limWw,,/B,,=0 for py<p <p. (11)

This result for p’ = p is, by itself, somewhat surprising. Loosely speaking its meaning is
that the aggregate amount of money won divided by the total amount wagered
approaches zero for all optimal proportional bettors who coincidentally experience the
ideal, or expected, proportion of wins and losses in their lengthening sequence of plays.
At the same time, each individual in this collection is having his fortune grow
unlimitedly at precisely the exponential growth rate desired.

The following numerical calculations, to illustrate (8) when p = 0.6, f=0.2, and
Po = 0.5503, suggest that limsup might be replaced by ordinary limit and inequality
with equality for p’ > p as well. Also, there may exist an interval of values, p’ < p,, for
which W, , <0 but limW, /B, ,=0.

Values of W,/ B,

n: 5 10 100 500 1000 o(p, p)
»

0.50 —0.0973 —0.0724 —0.0357 —0.0252

0.55 —0.0005 —0.0001 — 0.00001

0.59 0.0580 0.0241 0.0141 0.0000
0.60 0.0997 0.0980 0.0734 0.0361 0.0256 0.0000
0.61 0.0879 0.0503 0.0401 0.0209
0.70 0.3028 0.2528 0.2262 0.2219 0.2174
0.80 0.5253 0.5194 0.4724 0.4584 0.4565 0.4545

0.90 0.7508 0.7220 0.7159 0.7150 0.7143




MEASURES OF WIN RATE IN PROPORTIONAL BETTING 1545

4. An Asymptotically Certain Sequence of Events with Arbitrarily Small
Average Win per Unit Bet

An even more surprising result than (11) holds, but first we require a proof of the
seemingly obvious fact that

Wn,p’/Bn,p’ < Wn,p"/Bn,p" if P, <P”‘ (12)

We prove this by supposing n = v + d games played by a proportional bettor have
resulted in v victories and d defeats with some given order specified for the results. Let
a particular trial which results in a loss be identified, with B being the amount of
money wagered up to and including this loss and 4 the amount wagered after the loss.
For this sequence the total amount won is (1 + f)°(1 — f)* — 1, while the total amount
bet is B + A. Now, change the specified loss to a win so the resultant sequence of
v+ 1 wins and d — 1 losses is associated with a gain of (1 + f)**'(1—-f)? ' =1 and a
total wager of B + (1 + f)4 /(1 — f). It is simple to show that the win rate in the latter
case is larger than in the former and hence that

B+(1+/)4/(1-/) < B+A
(A+H7TA=-HTI =1 A+H A= -1
Suppose we now change each of the d losses in all (}}) sequences of v wins and d losses
into a win. We will thus have created all (j_;) sequences of v + 1 wins and d — 1

losses, however with a multiplicity of v + 1. Summing all (v + 1)(;_,) possible values
of the left-hand side and d(}}) values of the right-hand side of (13), we obtain

(13)

B, . B, .
n np n n.p ” _ o
(v+l)(d—1)W,:;<d(d) W, where p”=(v+1)/n and p'=v/n

Canceling (v + 1)(;," ) = d(}) and inverting yields (12).
Now, let € > 0 be given and define
_1+f+fe+e
2(1 + fe)
for which Q(p, p”) = e. Let 4, be the event that the sample proportion of wins in »n

trials is less than p”. The quotient E(Win|A4,)/ E(Bet| 4,) is a weighted average of the
values of W, /B, , with p’ < p”, and therefore, using (12),

limsup E(Win|4,)/E(Bet| 4,) < limsup W,,./B, . < € (14)

”

>p=01+/)/2

with P(4,)— 1.

The unconditional value of E(Win)/ E(Bet) after n trials is also a weighted average
of the W / B, . (Weighting is by the relative contribution to E(Bet) for each possible
p’-) Thus its constant value of f=2p — 1 results almost entirely from the increasingly
improbable sample proportions distinctly greater than p itself.

5. Long-Run Fantasy

Suppose a host of gambling angels wager the fraction f = 2p — 1 of their fortunes on
independent sequences of tosses of a biased coin, p > 1/2. We look in on them after,
for instance, large n trials each and ask all of them to write their individual fractions of
total win divided by total bet on separate pieces of paper. Naturally almost all of them
are ahead of their gambles and most have won huge sums.

Equation (7) suggests that their aggregate win divided by their enormous collective
wager (the sum of the numerators divided by the sum of the denominators) will be
nearly EX, = f and will, by (2), exceed the average value of all the fractions on their
pieces of paper. If the game is not too favorable (p close to 1/2), (4) and (5) predict
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that the shape of a histogram of the values of all the individual win rates will resemble
an exponential distribution and that the unweighied average of all the gamblers’ win
rates will be about half of the collective win rate (weighting by amount bet).

If we isolate those who have coincidentally won precisely np games, thus experienc-
ing the most probable result, (3) guarantees the distribution of this group’s individual
win rates will appear much the same as that of the entire group. Nevertheless, by (11),
these angels, who in a sense have nothing to complain about, will have a collective win
rate near zero.

When we look in on the entire host again after another large n trials, all of the
previous remarks apply. But, by (6), almost none of the gamblers will have the same
win rates we observed on our first inspection; it’s as if a divine wind redistributed the
fractional win rates they all originally displayed.

A gambler who recorded his own up to date win rate every thousand trials or so
would discover, in reminiscence, that this collection of figures also would have a
distribution like that of the entire group. But for the individual desiring a constant,
predictable return on his investment there would be no hope.

Perhaps the most astonishing aspect of this asymptotic behavior is that no matter
how favorable the game, so long as p < 1, (14) would apply. Thus even if they play a
game with p =099, bet f=0.98 of their current capital at each trial, and get
astronomically rich very fast, the proportion of these gamblers having long-run sample
proportions of success less than p” = 0.9902, and hence collective win rate unlikely to
exceed € = 0.01, would approach 1.

6. Remarks

Many numerical calculations and simulations not presented here strengthen the
conjectures near the end of §3 and also suggest the following:

(a) The absolute value of W / B,, is decreasing in » for all p’ and, as we might
anticipate, im W, /B, , =2p’ — 1 if p’ < 1/2.

(b) E, ,(R,) increases in n and ER, decreases in n, both with the same limit of ER.

(c) If R,, is the collective win rate of m optimal proportional bettors each
independently playing the same game n times, it converges in distribution to R
regardless of what fixed value is assigned to m. This situation is apparently a different
kettle of fish entirely from fixing n, however large, and then letting m increase without
bound, in which case the convergence is to the constant f.

(d) The same qualitative conclusions about E(Win)/ E(Bet) apply to games with
payoffs other than the two values of +1 and —1 (for which the optimal fraction f is
usually not equal to EX ;). The formulation would be more awkward and the proof, no
doubt, more intricate.

In practice, the asymptotic curios of this paper are unlikely to be realized to a
perceptible degree, this for a couple of reasons. The number of trials and gamblers
necessary would require both an amount of money far in excess of the wealth of this
planet and time to find gambling opportunities beyond the human lifespan. Also, the
unspecified magnitude of the “host” in §5 is necessitated because the nature of the
distribution of R,,, is unknown: with large »n fixed, the value of m necessary for the
collective win rate to stabilize near E(Win)/ E(Bet) could be very large indeed.

The results do serve, however, to remind us that the rationale for proportional
betting involves neither the expectation of wealth itself nor conventional measures of
win rate, but rather such factors as logarithmic utility, long-term capital growth, and
probability of ruin. Some interesting examples of the extent to which ordinary
expectation is sacrificed by proportional betting can be found in Finkelstein and
Whitley.'

! This paper would not have been possible without Stewart Ethier’s invaluable correspondence.
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