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Long-Run Versus Short-Run Behaviour of the Real

Exchange Rates

Abstract: This paper discusses the mean stationarity of real exchange rates

by using new time series methods and new tests. The question whether the

real exchange rates have a unit root or are level reverting is set in the general

and flexible framework of fractionally integrated processes. The estimations

and tests sustain the claim that real exchange rates may be non stationary and

not revert to any short-run parity. However, estimations also suggest that real

exchange rates behave differently on the short and on the long run and that

they may revert to parity in a century-long period.
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1 Introduction

The present paper discusses the stationarity and parity reversion behaviour of

real exchange rates in light of new time series methods and new tests. The sta-

tionarity of exchange rates has been discussed extensively given its theoretical

and practical implications, namely for the purchasing power parity hypothesis

and for economic policy.

In fact, it is usually accepted that one major implication of the purchasing

power parity is that real exchange rates are mean stationary (see, e.g., Baillie

and McMahon 1989). In contrast, if they follow a random walk or, in general,

if they have an autoregressive unit root, then there is no equilibrium value to

which the real exchange rate returns and present shocks are expected to become

permanent deviations.

Tests for the stationarity of real exchange rates have concentrated on the

alternative between a unit root and a stationary autoregressive coefficient. Clas-

sic and Bayesian unit root tests have been applied by various authors with con-

tradictory results. Frenkel (1981), Hakkio (1986), Baillie and Selover (1987),

and others find support for the random walk hypothesis about real exchange

rates. By contrast, Taylor and McMahon (1988), Abuaf and Jorion (1990), Witt

(1992), and others cannot reject the purchasing power reversion. In this last

work, arguing, with Sims (1988), that classical statistical tests for unit roots

are fundamentally flawed, Witt applied the Bayesian Sims test to new long se-

ries he constructed and concluded for the existence of large autocorrelation
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coefficients, but not unit roots. Accordingly, he suggests that deviations from

purchasing power parity “persist for a number of years, but they are not per-

manent.”

In a widely global market, among free market economies and on the long

run, it is hard to believe that real exchange rates may follow a random-walk-

type process. If this were true, in a finite future and with a positive probability it

would be possible to buy an airplane in one country by exchanging the currency

that buys a potato in another one. As Dornbusch and Krugman (1976) have said,

“Under the skin of any international economist lies a deep-seated belief in some

variant of the PPP theory of the exchange rate". The fact that unit root tests have

often pointed to unit-root type models may well represent a shortcome in the

economic and statistical methodology or the in the available data. We argue

in this direction, as we apply a different time series approach and use much

longer data sets than the ones usually studied. We claim that the alternative

between a unit root and a stationary model is a limitative framework and we

show that long data sets are necessary to test for a long-run concept of the

PPP. Accordingly, we discuss the unit root issue in a more general and flexible

setting by using fractionally integrated models. We develop an approach that

builds upon previous work by Diebold, Husted, and Rush (1991), Baillie and

Pecchenino (1991), Cheung and Lai (1993), and Wu and Crato (1995). These

authors have argued that fractionally integrated models are better suited to

analyze long-run parity reversion. Consequently, following Sowell (1992), they

have discussed the parity reversion in terms of the degree of integration of the
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series and not in terms of the autoregressive unit roots.

We have studied the problem in the context U.S. and U.K. real exchange

rates against the Portuguese currency. We have constructed two coherent sets

of series. The first set consists of the monthly exchange rates for the last twenty

years. The second set consists of the annual rates, with which we were able to

construct with a century-long period worth of data.

For estimating the degree of integration of the series as well as other model

parameters, we use the Whittle spectral likelihood method. This approximate

maximum likelihood estimator has been receiving increasing attention in the

literature given its computational simplicity and good practical performance—

see, e.g., Crato and Ray (1996) and the references therein. As an output of the

algorithm, we get estimates which allow a Wald-type test for stationarity or

nonstationarity.

The results show a sharp contrast between the shorter series and the century-

long series. While on the first series the estimated models are statistically undis-

tinguishable from unit-root nonstationary and non-level-reverting models, on

the second series the unit root hypothesis is rejected and the hypothesis of

parity reversion holds.

For the recent period of flexible exchange rates, the estimates point to the

nonstationarity of the series. However, estimates for the longer series suggest

a degree of integration d greater than zero but smaller than the unity, while

stationarity (d < 1/2) is not rejected. This is compatible with the level reversion

implied by the purchasing power parity. Thus, in the framework of fractional
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models, the hypothesis of long-run parity reversion can be made compatible

with the empirical evidence.

The plan of the paper is as follows. In Section 2, we discuss the impulse-

response function of fractionally integrated models. In Section 3, we discuss the

data and the transformations applied before testing. In Section 4, we describe

the tests for fractional unit roots and apply them to Portuguese real exchange

rates. The conclusions are summarized in Section 5.

2 Fractional Unit Roots

Let the time series under consideration be represented by (Xt). Traditional tests

for the presence of a unit root essentially estimate an autoregressive model of

real exchange rates. Following Witt (1992), the basic model can be written as

follows

(Xt − µ) = φ(Xt−1 − µ)+ut, (1)

where µ is a constant and ut is a zero-mean error term. In this model, the sta-

tionarity and parity-reversion are dependent on the value of the autoregressive

parameter φ. If φ < 1, then the present shocks ut would be damped and, in

absence of future shocks, future values of Xt would revert to µ, the uncondi-

tional mean of the process. But, if φ = 1, then present shocks would persist

forever and there is no tendency for (Xt) to converge to any constant.

If we allow (ut) to be a moving average of a white noise, i.e., of a noncorre-

lated zero-mean process (εt), then model (1) can be seen as a special case of an
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autoregressive moving average model, an ARMA(p, q):

(Xt − µ)−φ1(Xt−1 − µ)− . . .−φp(Xt−p − µ) = εt + θ1εt−1 + . . .+ θqεt−q (2)

Let B and ∇ represent the backwards and the differencing operators, respec-

tively, i.e. BjXt := Xt−j and ∇Xt := (1 − B)Xt = Xt − Xt−1. Let φ(B) and θ(B)

represent the autoregressive and moving average lag polynomials in (2). The

model (1) corresponds to an ARMA(1, q). If φ = 1 we have a unit root in the

autoregressive polynomial φ(B). With this notation, the model (1), with a unit

root, can be rewritten.

(1− B)(Xt − µ) = ∇(Xt − µ) = θ(B)εt

Classical Dickey-Fuller type tests or the Bayesian test of Sims, as in Witt

(1992), consider the basic model (1). In contrast, our fractional unit root tests

consider the general model

φ(B)∇d(Xt − µ) = θ(B)εt (3)

where d is allowed to be any real value. If d is an integer then the differencing

operator is defined in the usual way and (3) is the well-known ARIMA model. If

d is any real number the fractional difference operator ∇d is defined as

∇d = (1− B)d :=
∞∑
k=0

(
d
k

)
(−B)k,

where
(
d
k

)
= d
k
d−1
k−1 · · · d−k+1

1 .

The model (3) is called an ARFIMA(p,d, q) process, i.e., an autoregressive

fractionally integrated moving average process. It was introduced indepen-

dently by Granger and Joyeux (1980) and by Hosking (1981), and have been
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proved as a valuable tool in various areas of econometric modeling (e.g., Diebold,

Husted, and Rush 1991; Sowell 1992), forecasting (e.g., Geweke and Porter-

Hudak 1983; Ray 1993), and financial time series analysis (e.g., Shea 1992; Che-

ung 1993).

An ARFIMA(p,d, q) model is nonstationary when d ≥ 1/2. The existence

of a simple (integer) unit root in the autoregressive polynomial corresponds to

the particular case d = 1.

ARFIMA models have an interesting impulse-response function (see, e.g.,

Diebold and Nerlove 1990). In fact, for d < 1.5, the first differences of the

ARFIMA process (Xt) have the following Wold representation

Xt −Xt−1 =
∞∑
k=0

ψkεt−k,

where the sequence of moving average parameters (ψk) are the impulse-respon-

ses, parameters that track the response of future changes of Xt to an unitary

shock. The cumulative impulse responses

Sj =
j∑
k=0

ψk (4)

trace the response of future levels of Xt to the same unitary shock.

To analyze the long-run effects of shocks on the exchange rates, i.e., the limit

value of Sj , it is convenient to use the spectrum of the differenced process, say

f(ω). It is known that

f(ω) = |1− e−iω|−2Dg(ω), (5)

where g(ω) is the spectral density of a causal and invertible ARMA process,
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hence finite and strictly positive, and D = d − 1. The values of f(0) are de-

termined by the difference power transfer function since |1 − e−iω| = 0 for

ω = 0. There are three situations to consider. For D = d − 1 < 0, we have

limω→0 f(ω) = 0, which implies f(0)2π/σ 2 = |∑ψj|2 = 0 and S∞ = ∑
ψj = 0.

For D = d − 1 = 0, we have limω→0 f(ω) = g(0), a positive finite number,

which implies that S∞ is a positive finite number. For D = d − 1 > 0, we have

limω→0 f(ω) = ∞, which implies that S∞ diverges.

The long-term exchange rate dynamics are completely different according

to each of these three situations. If d = 1, then Sj converges to a finite non-

zero value. If d ≥ 1, then Sj diverges. However, if d < 1, then Sj → 0 as

j → ∞, i.e., level reversion exists in the long-run. The remarkable property of

the long-run behavior of Sj in an ARFIMA model for the exchange rates, is that

the nonstationary case (d ≥ 1/2) is compatible with parity reversion (d < 1).

3 Portuguese Real Exchange Rates

The data we consider are the real exchange rates of the British pound and the

U.S. dollar against the Portuguese escudo. Two sets of series were constructed:

twenty years of monthly data and one hundred years of annual data. The

monthly data span the period starting in January 1973 and ending in Decem-

ber 1994, which corresponds to the flexible exchange rates period and mostly

corresponds to the recent political Portuguese history on the wake of the demo-

cratic revolution of April 1974. The annual data start in 1891 for the British
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pound and 1900 for the U.S. dollar; both series end in 1994. All exchange rates

are end-of-period. Consumer price indexes (CPI) are used to compute the real

rates.

In order to construct the series, raw data were obtained from the following

sources. For the monthly series, the nominal exchange rates were obtained from

Banco de Portugal and the CPI’s from International Financial Statistics. For the

annual series, nominal U.K. pound exchange rates were obtained from Mata

and Valério (1994)—period 1891–1950—, from Neves (1994)—period 1951–

1992—, and from Banco de Portugal—period 1993–1994. Annual U.S. dollar

exchange rates were obtained from Neves (1994)—period 1900–1930—, from

Mata and Valério (1994)—period 1931–1990—, and from Banco de Portugal—

period 1991–1994. The annual CPI’s were obtained from Siegel (1992)—period

1891–1990—and were extended up to 1994 by using the data in International

Financial Statistics. In all cases, the data were made compatible but using the

overlapping periods.

In order to compute the logarithmic real rates, Xt, the following formula has

been used

Xt := ln

(
Et

IP,t/IF,t

)
, (6)

where Et is the nominal exchange rate, and IP,t and IF,t represent the Portuguese

and the foreign price indexes at period t.

The logarithmic transformations are standard. They stationarize the vari-

ance of the process and rescale the observations in order to deal with rates of

change.
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The real rates are depicted in the Figures. By visually inspecting the move-

ment of the exchange rates, we do not see striking changes in their behaviour.

Nevertheless, a question may arise regarding their structural stability, namely

for the long data sets, which span a pre- and post-flexible regime. After fitting

the models, it could be worthwhile to test for structural breaks in the data. How-

ever, the post-flexible regime includes only 20 observations. Having decided to

adopt a fractionally integrated methodology, this short number of data points

precludes any reliable estimation and testing for this later period.

— — INSERT FIGURES ABOUT HERE — —

Formula (6) can be rewritten as stating a relation between the nominal loga-

rithmic value of the foreign currency in terms of the national currency, i.e., the

nominal logarithmic exchange rate et, and the logarithmic ratio of national to

foreign price indexes, pt:

et = pt +Xt.

The most common version of the purchasing power parity hypothesis corre-

sponds to the stationarity in mean of the residual process Xt. There is, how-

ever, a less restrictive version which corresponds to the stationarity in mean of

the residuals given by the regression equation

et = αpt +Xt, (7)

where the constant α is not bound to be one.

Simple tests indicate that all log raw series under consideration are not sta-

tionary. On Table 1 we show the results of the Geweke and Porter-Hudak spec-
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tral estimator (GPH) for d̂. The estimates were computed on the differenced se-

ries obtaining D̂. Then, we computed d̂ = D̂+1 for the original series. The GPH

estimator is based on the form of the spectrum of a process with integration pa-

rameter d, as exhibited in (5). After taking logarithms on both sides, we obtain

an equation, which is linear in d. The regression is then performed by using the

finite-sample counterpart of the spectrum, the periodogram. For robustness of

the results, we have used various truncations for choosing the number m of

lower periodogram ordinates to use. The standard deviations were computed

from the regression results. For details, see Geweke and Porter-Hudak (1983)

or Brockwell and Davis (1991).

All the estimates shown on Table 1 are compatible with processes with a unit

root and strongly reject the stationarity hypothesis at all conventional levels of

significance.

— — INSERT TABLE 1 ABOUT HERE — —

Next, we estimated the parameter α in equation (7). The results are pre-

sented on Table 2. Using conventional levels of significance, in three cases the

estimates were significantly different from the unity, although very close to it.

In one case, the monthly US series, the hypothesis α = 1 was not rejected.

These results showed that the observed indexes could be taken as relatively

good proxies for the theoretical price variables, but imperfect ones, at least in

three series. Consequently, in the three cases in which the homogeneity condi-

tion α = 1 could not be sustained, we computed the real exchange rate series
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Xt as the residuals from the regression on equation (7). For the US monthly

series, we simply used formula (6).

— — INSERT TABLE 2 ABOUT HERE — —

The next steps were performed with the resulting series.

4 Tests and Results

Our approach is based on the Fox and Taqqu (1986) frequency-domain approxi-

mate maximum likelihood. Using a Whittle approximation to the log-likelihood

function (Brockwell and Davis 1991, p. 529, equation (13.2.26)), the function

L(x|β) = 2
n

[n/2]∑
j=1

In(ωj)
f∗β (ωj)

+ 2
n

[n/2]∑
j=1

log f∗β (ωj), (8)

is minimized, where x represents the data and β the parameters of the ARFIMA

model being estimated. The function (2π/σ 2
ε )f

∗
β (ωj) = fβ(ωj) is the corre-

sponding spectrum and In(ωj) is the periodogram of the series. The parame-

ters in the vector β are the p + q + 1 coefficients φj , θj , and d. The estimated

vector of parameters β̂ is the one which minimizesL(x|β). The mean of the pro-

cess is estimated as the sample average of the series. The variance-covariance

matrix of β̂ is estimated by using the Hessian matrix of f(ωj) at the optimum.

For each series, we estimated a set of ARFIMA(p,d, q) models with p and

q orders in the range p,q = 0,1,2,3, and selected the estimated model by

using the AICc criterion (Brockwell and Davis 1991, p. 304). Simulation results
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in Crato and Ray (1996) show that this criterion is particularly appropriate in

presence of a mixed model (p,q ≠ 0).

The results of the estimations are presented in Table 3. The test on the

parameter d is performed as a usual Wald test, using the estimated standard

deviation.

— — INSERT TABLE3 ABOUT HERE — —

In all cases, we have obtained nonstationary models (d > 1/2). However,

there are significant differences between the monthly and the annual series.

The monthly U.K. and U.S. real exchange rates strongly point into the direc-

tion of a unit root process, i.e., an ARIMA(p,1, q), thus a nonstationary and a

non-parity-reverting process. A simple graphical analysis of the monthly series

shows an extreme randomness, various level shifts, and apparent short-period

trends. The existing reversions are not enough to suggest any mean level. This

could indicate that the PPP hypothesis cannot be empirically validated with

these series, similarly to what a number of authors have found with other data.

The annual data presents a completely different picture. For both the U.K.

and the U.S. annual series, the unit-root hypothesis (d = 1) is rejected, the

hypothesis of parity reversion (d < 1) is reinforced, and the hypothesis of sta-

tionarity (d < 1/2) is not rejected. From the graphical analysis of these longer

annual series, we note that reversions are more noticeable and we may suspect

that a long-term tendency to parity can exist.

This contrast between short- and long-term series strengthens a time-range

argument previously made by several authors. As Diebold, Husted and Rush
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(1991), among others, have argued, the purchasing power parity is a long-term

concept and short-term series are not large enough to empirically test its valid-

ity. What we believe it is clear from our results is that, in this context, long-term

does not mean a couple of decades but at least a century-long series.

5 Conclusions

We have constructed two CPI based real exchange rate series corresponding to

two most important currencies: the British pound and the U.S. dollar. In each

case, twenty-year-long monthly series and century-long annual series were ana-

lyzed. By using novel time series tools derived from the analysis of fractionally

integrated models, we have tested the stationarity and parity reversion of these

series.

The fractionally differencing parameter d of the series was estimated by

maximizing the spectral likelihood. In all cases, we found d estimates outside

of the stationary range. In the long-run series, however, the estimates did not

reject parity reversion neither the stationarity, since the values of d̂ pointed to

level-reverting models and are compatible with stationary fractional processes.

Our results reinforce the claim that short-term series are not appropriate

for analyzing the long-run behavior of real exchange rates. Consequently, the

empirical discussion of the purchasing power parity hypothesis should only be

based on the long-term analysis of exchange rate behavior. Long-memory mod-

els such as the fractionally integrated ARFIMA provide both a flexible framework
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and an appropriate setting for analyzing this long-term economic behavior.
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Table 1: Estimated degree of integration d for the log raw series

Monthly Series Annual Series

UK£ UK CPI US$ US CPI UK£ UK CPI US$ US CPI

m = [n0.5] 1.147 1.041 1.090 1.029 1.150 1.152 1.124 1.023

(0.075) (0.046) (0.063) (0.028) (0.215) (0.223) (0.187) (0.189)

m = [n0.6] 1.153 1.038 1.124 1.037 1.076 1.033 1.077 0.980

(0.058) (0.030) (0.045) (0.024) (0.135) (0.130) (0.112) (0.099)

m = [n/2] 1.026 1.007 1.040 1.009 1.027 1.019 1.038 1.017

(0.020) (0.012) (0.018) (0.009) (0.050) (0.045) (0.043) (0.036)

The estimates were obtained by the GPH method. The number m of different periodogram ordinates considered

were two truncations and [n/2], which corresponds to the whole periodogram. The symbol [·] represents the

greatest integer function.

Table 2: Regression estimated parameter α for the equation (7), relating ex-

change rates and price indices

Monthly Series Annual Series

UK Pound US Dollar UK Pound US Dollar

α̂ 1.059 1.000 1.065 1.059

σ̂α̂ (0.018) (0.017) (0.014) (0.017)
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Table 3: Estimated degree of integration d for the AICc selected models

Monthly Series Annual Series

UK Pound US Dollar UK Pound US Dollar

ARFIMA Model (1,d,0) (1,d,1) (0,d,1) (1,d,0)

d̂ 0.885 1.009 0.578 0.575

σ̂d̂ 0.111 0.109 0.127 0.245
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