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Volatility Scaling in Foreign Exchange Markets

Abstract

When distributions are non-Gaussian or display linear dependence it may not be appropriate

to annualise the risk coefficient determined by the linear rescaling of the variance from other

time intervals. This paper investigates the scaling relationships for daily spot foreign currency

returns: the Deutsche mark- U.S. dollar (DMK/USD), the Swiss franc-USD (SWF/USD), the

Japanese yen-USD (JPY/USD), and the English pound-USD (GBP/USD), from February

1985 to May 1998. We find that all four series were non-Gaussian and displayed similar

scaling properties with the estimated variance, based upon a scaling at the square root of time,

significantly underestimating the actual level of risk predicted from a normal distribution. The

economic implications of these results were then established by estimating the premiums on a

series of foreign currency options using a variation of a Black-Scholes model with varying

strike prices. Based on a 180 day maturity, the results suggested that the inappropriate scaling

of risk underestimated the price of call and put options for DMK/USD, SWF/USD and

JPY/USD, but not for GBP/USD.
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Volatility Scaling in Foreign Exchange Markets

Non-normality is a feature of many financial time-series. However many market valuation

models assume normality or attempt to adjust for the non-normality of price distributions.

Many of these valuation models also require an annualised risk coefficient. However, under

the random walk model, the temporal dimension of risk is irrelevant with the risk of the asset at

any time interval being estimated by the linear rescaling of the risk from other time periods. That

is, the convention is for risk to be scaled at the square root of time. This crucial assumption

has rarely been tested and may be inappropriate for many valuation techniques.

Researchers generally have begun their valuation analysis by investigating the distributional

qualities of financial time-series data. Evidence of non-normality in the distributions of daily

and weekly returns for spot and forward currencies has been extensive (Hodrick, 1987). More

recently the literature has focused upon the low and high order correlation structures of time-

series. Low order correlation structures suggest short-term memory, or short-term

dependence, which tend to decay rapidly over 2 to 3 days. Alternately high order structures

suggest long-term memory, or long-term dependence, which persists providing positive

economic benefits to investors with trend following forecasting systems.

The presence of long-term memory effects may be investigated by calculating an exponent

named after the original developer Hurst (1951); the Hurst exponent, or using the

modification suggested by Lo (1991) to eliminate low order persistence. Findings have

generally been in favour of the presence of fractal structures in spot currency (Cheung, 1993;

Batten and Ellis, 1996), stock indicies (Mills, 1993; Nawrocki, 1995) and futures markets

(Fang, Lai and Lai, 1994; Corazza, Malliaris and Nardelli, 1997). While these researchers

noted the presence of long and short-term dependence in the lag structure of time-series data,

the implication for the estimation and modeling of risk (the standard deviation of the log of

returns) has not investigated.

Statistical long-term dependence has particular implications for modelling the behaviour of

financial market asset prices. Modelled as Brownian or fractional Brownian line-to-line
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functions1, the principle of scale invariance suggests an observable relationship between asset

returns across different time frequencies. Series exhibiting long-term dependence (of the type

associated with fractional Brownian motion) should scale by a factor equivalent to their Hurst

exponent. By contrast, Gaussian series should scale by the factor H = 0.5.

An example of a common application of scaling in financial time-series involves the annualising

of risk in the Black-Scholes Option Pricing Model. Under the assumption of a normal Gaussian

distribution the Hurst exponent H = 0.5 implies for time-series data that mean annual increments

(or returns) should be 12 times the equivalent monthly mean and 52 times the equivalent weekly

mean. Similarly, the standard deviation of annual increments should be √12 times that of the

monthly increments. However, series generally exhibit higher peaks and fatter tails than are

associated with the normal distribution and become more leptokurtic as the frequency at which

the returns are measured increases. One implication of this result is that rescaling returns by the

square root of time necessarily incorporates the use of an inappropriate scaling factor. By way of

example, Peters (1994) demonstrated that empirical estimates of the standard deviation of daily

returns for spot USD/JPY scaled at a rate H = 0.59. In terms of the annualising of risk in the

Black-Scholes model, this result suggests that volatility would be underestimated when scaled

using H = 0.5.

The presence of fractal structures in time-series data also has implications for investors and risk

managers. Analysing mean absolute logarithmic price changes for five foreign exchange rate

pairs, Muller, Dacorogna, Olsen, Pictet, Schwarz and Morgenegg (1990) found that intraday

price changes scaled at approximately H = 0.59. Measuring the standard deviation of interday

returns as the proxy for risk, Holton (1992) and Estrada (1997) demonstrated that when asset

prices did not follow a random walk, annualising risk by the square root of time (T½) either

overestimated or underestimated the true level of risk associated with an investment. Empirical

analysis by both authors confirmed the tendency for the risk of financial asset returns to scale at

a faster rate than the square root of time leaving investors with incorrect investment horizons

and risk managers with incorrectly priced financial assets. Neither Holton, nor Estrada,

attempted a solution to the problem of scaling risk for non-random (non-Gaussian) time-series.

                                                          
1 The definition of a line-to-line function is one where (as in the case of time-series observations)

increments in the series are constrained not to move backward. A Brownian line-to-line function is
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To reconcile these findings, initially we investigate the distributional qualities of the daily

returns of long-term currency data and determine the dependence relationships. The second

objective was to establish the relationship between the data's distributional qualities, and the

appropriate scaling relationships. Four long-term daily spot foreign currency series were

investigated: the Deutsche mark-U.S. dollar (DMK/USD), the Swiss franc-USD (SWF/USD),

the Japanese yen-USD (JPY/USD), and the English pound-USD (GBP/USD) from February

1985 to May 1998. These markets constitute the largest foreign exchange markets in the world

measured in terms of turnover, are highly liquid, and have low transaction costs. The BIS

(1996) survey on foreign exchange market activity estimated these currency pairs accounted

for 61% of total daily turnover in the spot foreign exchange markets in 1995 (DMK/USD

US$253.9 billion (29%), JPY/USD US$242.0 billion (18%), GBP/USD US$77.6 billion (9%)

and SWF/USD US$60.5 billion (5%)). Trading also occurs on a 24 hour basis, with almost

instantaneous transmission of news items to market participants using computerised

technology and on-line broking services. Consequently these markets are as close to the

efficient market ideal as is currently possible.

Initially, the distributional qualities of the data were investigated with all four series

exhibiting features of non-normality (leptokurtosis), although the lagged correlation structure

did not suggest the presence of long-term dependence. The four series were subsequently

tested for the presence of long-term dependence using the Hurst technique. Then, the volatility

of these four distributions was estimated using two hundred and fifty-two different scaling

intervals (t–(t-1)) to (t –(t-252)) with all four scaled series underestimating the level of risk in

the series, although to different degrees. The economic implications of these results were also

significant. Employing a simple Black model for pricing currency options, we find that the

incorrect scaling of volatility led to significant incorrect pricing decisions. Some questions

still remain including what is the relevant and appropriate time horizon implied by the lag

structure?

The next section discusses the scaling and self-similarity of Brownian and fractional

Brownian motion systems in more detail. Then Section II establishes the theoretical basis and

research methodology for the empirical research. Section III describes the currency data and

provides evidence on its distributional qualities. Section IV presents our empirical results on

                                                                                                                                                                                    
therefore analogous to a Gaussian random walk through time.
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the scaling relationships. The final section summarises the results and allows for some

concluding remarks.

I.  Scaling and Self-similarity in Brownian and Fractional Brownian Motion.

The concepts of standard Brownian motion (sBm) and fractional Brownian motion (fBm) may

be defined in terms of the relative level of dependence between increments. One characteristic of

these processes is their self-similar behaviour. Developing the principles of fractal geometry,

Mandelbrot (1977, 1982) proposed the concept of fractional Brownian line-to-line functions to

describe time-series that exhibited an underlying fractal distribution. Encompassing values of

the Hurst exponent 0≤H≤1, the distributions of these functions were defined to be similar at

different scales. Ordinary Brownian line-to-line motion B(t) in time t was characterised by small

and mutually independent increments in B such that

where F(x) was the probability distribution of x. For real values of x and t, and H = 0.5,

Equation (1) conformed to standard Brownian motion for all t and ∆t. Distinguishing this from

fractional Brownian line-to-line motion, BH(t), Mandelbrot relaxed the restriction of H = 0.5

necessary for a Gaussian process, thus allowing any 0≤H≤1. For 0≤H<0.5 the series BH(t) was

characterised as being anti-persistent. Anti-persistent series would diffuse more slowly than

ordinary Brownian line-to-line functions and would therefore appear “rougher” than a graph

corresponding to a Gaussian process. Alternatively, persistent series with 0.5<H≤1 would appear

“smoother” than a graph of a Gaussian process of the same function.

Defining the fractal dimension (D) of a line-to-line function as a measure of the degree of

irregularity of the graph Mandelbrot (1987) proposed an alternative interpretation of the value of

the Hurst exponent was the amount of space the graph fills in two-dimensional space. Measured

as
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the fractal dimension of an ordinary Brownian line-to-line function is D = 1.5. For the limiting

values H = 0 and H = 1, the value of the fractal dimension is D = 2 and D = 1 respectively. The

intuition of this result is that the graph corresponding to H = 0 would fill its space entirely. For

the upper limit H = 1, the resulting graph would be linear, and hence only fill one dimension

(length). In so far that Brownian motion, as originally defined by Bachelier (1900), implies an

equal probability of incremental movement in all directions, the definition of the line-to-line

function may be seen as a more precise description of time-series behaviour. These functions are

explained in the following section, then evidence and implications of scaling relationships are

provided.

A. Characteristics of fractional Brownian motion and line-to-line functions.

The related concepts of self-similarity, self-affinity and scale invariance can be used to describe

the relationship between the parts and the whole of any function. For standard Brownian and

fractional Brownian functions, the relationship is expressed in terms of self-similarity. For line-

to-line functions (time-series) the correct expression is self-affine.

Consider a function (S) made up of the points X = [X0, X1,..., Xn], where the probability of

incremental movement is unrestricted with respect to the direction of the movement. Changing

the length of the function by a common factor r<1, such that rX = [rX0, rX1,..., rXn], will yield a

new function rS, whose geometric length is less than that of the original function. For the

appropriate value of r, self-similarity implies the original function S can be recovered by N times

contiguous replications of the self-similar rescaled function rS. In other words, the function S is

scale invariant, ie. it is invariant to the change in scale by the factor r.

For line-to-line functions measured with respect to time, Mandelbrot (1977) showed such

functions would instead be self-affine. Consider the same function (S), measured now as a line-

to-line function comprising the points X(t) = [X(t0), X(t1),..., X(tn)], in time t. Changing the time

scale of the function by the ratio r<1, the required change in scale of the amplitude was shown to

be rH for a self-affine function.

Given the function S was a Brownian line-to-line function, the distance from X(t0) to a point

X(t0 + t) was shown by Mandelbrot (1977) to be a random multiple of √t. Setting t0 = 0 it

followed for  t>t0 that
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where e was a random variable with zero mean and unit variance. Properly rescaled in time by r,

and in amplitude by √r, the increments of the self-affine rescaled function (rS)/√r would be

For the correct choice of scaling factor, the two functions S and (rS)/√r are statistically

indistinguishable, such that they have the same finite dimensional distribution functions for all t0

and all r>0. Consistent with the known value of the Hurst exponent for Gaussian series (H =

0.5), the scaling factor √r = rH  is characteristic of all self-affine Brownian line-to-line functions.

Allowing for 0≤H≤1, H≠0.5 it follows for fractional Brownian line-to-line functions that

Equation (3) can be generalised by

Equation (4) can similarly be generalised by

for a fractional line-to-line function. Self-affine line-to-line functions also appear the same

graphically when properly rescaled with respect to H. Mandelbrot (1977) noted that fractional

Brownian line-to-line functions should exhibit statistical self-affinity at all time scales.

Independent of the incremental length (or frequency of observation) of X(t0 + t) - X(t0), the

relative level of persistence or anti-persistence should remain consistent. Peitgen, Jürgens and

Saupe (1992), also revealed that the limit formula for the fractal dimension of Brownian and

fractional Brownian line-to-line functions in Equation (2) could be proved to follow directly

from the principles of scale invariance.

t e  |t-t) +t(|e  )tX(-t) +tX( 0.50.5
0000 ≈≈ (3)

r

)tX(-rt) +tX( 00 (4)

t e  |t-t) +t(|e  )tX(-t) +tX( HH
0000 ≈≈ (5)

r

)tX(-rt) +tX(
H

00 (6)
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B. Evidence and implications of scale invariance for foreign currency time-series.

Statistical long-term dependence has particular implications for modelling the behaviour of

financial market asset prices. Modelled as Brownian or fractional Brownian line-to-line

functions, the principle of scale invariance suggests an observable relationship between asset

returns across different time frequencies. Series exhibiting long-term dependence (of the type

associated with fBm's) should scale by a factor that is equivalent to their Hurst exponent.

Therefore Gaussian series should scale by the factor H = 0.5.

One objective of this research paper was to determine whether the returns from holding a spot

currency position scaled in a manner that was consistent with their underlying structures. The

first part of this Section will briefly recount empirical literature relating to evidence of statistical

long-term dependence in financial asset markets. This will provide the motivation for the current

analysis of the economic implications of long-term dependence in the various foreign currency

time-series. It should be noted that the failure to identify long-term dependent effects suggests

support for the nominated currency conforming to normally distributed standard Brownian

motion.

The fractal structure of financial price data has been widely investigated by Peters (1991, 1994)

whose results indicated that a number of financial time-series displayed a significant degree of

long-term dependence. Ambrose, Ancel and Griffiths (1992) disputed these results on

methodological grounds. In currency futures markets Kao and Ma (1992) described short-term

price dependence in GBP/USD and USD/DEM contracts. However, in spot exchange markets

Cheung (1993) and Batten and Ellis (1996) have also observed evidence of long-term

dependence. Investigating the economic implications arising from price dependence, Batten and

Ellis found evidence of arbitrage profits to speculators holding long USD/JPY positions when

the market was characterised by positive persistence. Recent research into the distribution of

financial asset returns has also provided evidence of long-term dependent effects. In US

agricultural futures markets Corazza, Malliaris and Nardelli (1997) suggested evidence of long-

term dependence using the Hurst exponent was consistent with the distributions of the contracts

being Pareto stable.
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II.  Research Methodology

Modelling spot currency time-series as a line-to-line function measured with respect to time,

scaling invariance can be used to describe the relationship between the moments of the

distribution of the time-series at different time intervals. While the formal definition of self-

affinity provided by Mandelbrot (1982) required that every mathematical and statistical

characteristic of the time-series under observation and its self-affine rescaled function should be

examined, in empirical practice this proof can be "inferred from a single test that is only

concerned with one facet of sameness" (Mandelbrot, 1982: 254). The test conducted in this

study is the self-affine relation described by Equation (5) and Equation (6) and is an examination

of scaling relations between the volatility of returns measured over four different time intervals;

k = 1, 5, 22 and 252 days. The values of k used corresponded to daily, weekly, monthly and

annual return intervals. Continuously compounded returns for four spot currency pairs,

DMK/USD, SWF/USD, JPY/USD and GBP/USD, were measured using Xq = ln(Pt - Pt-k) for

each above nominated value of k. The volatility of returns was estimated by the second moment

of the distribution of each returns series.

Using the principles of scaling invariance, the volatility of returns at any time interval can be

estimated from the volatility at any other interval such that for any combination of k and n, ∞ ≥

k ≥ n ≥ 1, where n is any interval length less than k

                                        ])PP([nk = ])PP([ 0.5
ntt

2H0.5
ktt

2
q −− −−= σσσ )/(                        (7)

Where the time-series under observation conforms to a standard Brownian line-to-line function

the value of the exponent H in Equation (7) is H = 0.5. For fractional Brownian line-to-line

functions, the value of H should be 0 ≤ Η ≤ 1; H ≠ 0.5.

Based on the above principle, the Hypotheses tested in this study were:

H0 : σq = (k/n) 0.5 σ(Pt-Pt-n )

H1 : σq = (k/n)H σ(Pt-Pt-n ), where 1 ≥ H ≥0,  H ≠ 0.5

Implied standard deviations for each interval (k = 5, 22 and 252) were estimated from the

standard deviation of n interval returns (n = 1, 5 and 22) for all n<k, and the results compared

to the observed standard deviations. The imputed value of the scale exponent, for which the
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standard deviation of k interval returns could be exactly estimated from the n interval standard

deviations, was then calculated for each currency pair. The significance of the imputed scale

exponent was that this represents the value of H for which the implied k interval standard

deviations equals exactly their observed values. The acceptance of the null hypothesis that the

appropriate scale exponent (H) is H = 0.5, will imply the series under observation conforms to

a random Gaussian distribution. Observed values of H which are significantly different from

H = 0.5, will imply the rejection of the null hypothesis.

In order to test for the economic significance of our findings, implied annual standard

deviations (k = 252) for each currency pair were estimated from the standard deviation of

returns over daily (n = 1), weekly (n = 5) and monthly (n = 22) intervals. The results were

then used to calculate the values of a series of in-the-money, at-the-money and out-of–the-

money European call and put foreign currency options.

III.  Foreign Currency Returns

The time-series properties of the natural logarithm (loge) of interday returns (Pt - Pt-1), for the

four exchange rates (DMK, SWF, JPY and GBP against the US dollar) from 22 February

1985 to 27 May 1998 (n = 3327 observations) are presented in Tables 1 to 4. These are

discussed in turn.

(insert Table 1 about here)

The first table (Table 1) provides information on the moments of the four time-series. For all

series, the sample means were slightly negative but not significantly different to zero.

However, the sum of the loge returns over the sample period (e.g -0.6416 for the DMK/USD)

shows the impact of the devaluation of the USD against all four currencies. For example, the

DMK/USD loge return (-0.6416) is equivalent to a nominal positive return of 52.64% from

holding DMK instead of USD, excluding the effect of the interest rate differentials over the

sample period. Consequently, technical trading strategies that exploited the long-term

depreciation of the dollar (such as moving average systems) would be expected to show

positive returns. Which of the many technical trading strategies was best, given holding and

transaction costs, provides scope for further analysis.
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The four series were also non-Gaussian, due largely to their leptokurtic nature than due to

skewness, which was close to zero. Three normality tests are reported (Anderson-Darling,

Jacque-Bera and Shapiro-Wilk) and each failed to accept normality in the four series. This

result is not surprising since leptokurtic, non-normal distributions are common in financial

time-series. Also, a note of caution should be exercised in interpreting these three test results

since they are very sensitive to small deviations from normality when the sample size is large.

However these small differences may impact on pricing and risk management practice due to

the higher probability of observations being away from the mean when the series displays

leptokurtosis. Overall the four series displayed different degrees of departure from normality,

with the JPY/USD and the GBP/USD being more normal than the DMK/USD and

SWF/USD. These phenomena may be partly explained by the correlation structure of the four

currencies pairs presented in Table 2.

(insert Table 2 about here)

While the four currency pairs suggest significant positive correlation (consistent with the

DMK, JPY, SWF and GBP all appreciating against the USD), the co-movement of returns

differed between the various currency pairs. Not surprising given the currency

interdependence of Europe, the highest positive correlations were between the DMK and

SWF (0.916), DMK and GBP (0.731), and SWF and GBP (0.698), while the lowest was

between the GBP and JPY (0.472). These results highlighted the limited ability for portfolio

managers to diversify currency portfolios during the sample period.

(insert Table 3 about here)

The four time-series were also tested for autocorrelation up to 252 lags, with the results for

lags 1, 2, 5, 22 and 252 presented in Table 3. The results suggest slight positive short-term

autocorrelation that dissipated after lag one. The significance of the autocorrelations was

tested using t-statistics and Ljung-Box Q statistics (reported as LBQ in Table 3). The t-

statistics were all high (ie. t > 1.25) for all currency pairs at lag one, but not high thereafter.

However the LBQ statistic was only significant for SWF/USD (p-value = 0.0908) and

GBP/USD (p-value = 0.0026) at lag 1. Over the longer lag structure three of the currency pairs

(DMK/USD, JPY/USD and GBP/USD) had autocorrelations which could be judged as being
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significantly different to zero (at the 90% level of confidence) at lag 22 (LBQ p-values were

0.0640, 0.0680 and 0.0524 respectively), while two of the currency pairs (JPY/USD and

GBP/USD) had autocorrelations which could be judged as being significantly different to zero

(at the 90% level of confidence) at lag 252 (LBQ p-values were 0.0899 and 0.0514

respectively).

The next table, Table 4, reports tests for mean stationarity in the four series. Values for the

Augmented Dickey-Fuller (ADF) test at lags of 9 and 28, and for the Dickey-Fuller (DF) test

(lag 0) are presented for each currency pair. Calculated for the loge returns series, the

significantly high negative values for each currency indicated that all the returns series were

stationary over the sample period. Critical values for the ADF and DF tests at the 1% and 5%

levels were –3.96 and –3.41 respectively.

(insert Table 4 about here)

Though not reported in Table 3, the four time-series were also tested for partial

autocorrelations up to 252 lags. Only the t-statistics for the DMK/USD at lag 1 (correlation =

0.0255, t-statistic = 1.4714), and the GBP/USD at lag 1 (correlation = 0.052141, t-statistic =

3.0075) were significant. Given the series were stationary, and had significant partial and

auto-correlations at lag 1, the 4 series were then tested as AR(1) and ARMA(1,1) processes.

None of the four series had significant coefficients when tested as ARMA(1,1) processes,

however the GBP/USD and SWF/USD both had significant coefficients when tested as AR(1)

processes (i.e. GBP/USD coefficient was 0.0256, t-statistic 3.01, p-value 0.003, and the

SWF/USD coefficient was 0.0293, t-statistic 1.69, p-value 0.091). This result is consistent

with the significant autocorrelations at lag 1 for both series as provided by the LBQ statistic.

Overall, although the four series provided evidence of non-normality in the form of

leptokurtic returns with a slight positive autocorrelation structure. Examination of the

autocorrelation structure of each series showed no compelling evidence that the appropriate

scale exponent was other than H = 0.5 (ie a Gaussian or random walk series). This result alone

would imply that the standard deviation of interday return's should scale at √t. The next

section investigates this issue in more detail by determining the scaling properties of the four
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currency series. Then, the implications for the pricing of currency options when volatility is

incorrectly scaled are determined using simple currency option pricing models.

IV.  Scaling Properties of Foreign Currency Returns

The scaling properties between the standard deviation of k and n interval returns (∞ ≥ k ≥ n ≥

1), for each of the four foreign currency pairs are presented in Tables 5 and 6. Table 5 results

present statistical evidence of volatility scaling, while results presented in Table 6 demonstrate

the economic significance of the empirical findings. Each set of results is discussed in turn.

(insert Table 5 about here)

Results presented in Table 5 show implied values for the scale exponent H in Equation (7)

above. Using observed values of the standard deviation of k and n interval returns, the implied

scale exponent is the value of H in Equation (7) for which rescaled values of the standard

deviation of n interval returns exactly equal the standard deviation of k interval returns. Under

the null hypothesis H0, the value of the scale exponent should be H = 0.5. Rejection of the

null hypothesis will imply that the currency series tested did not conform to a Gaussian

random walk over the sample period.

Implied values of the scale exponent in Table 5 are typically closer to H = 0.5 when the

difference between the return intervals k and n is small. That is, when the standard deviation

of weekly returns (k = 5) are estimated by rescaling daily return standard deviations (n = 1),

implied H values are closer to H = 0.5, than when daily return standard deviations are rescaled

to estimate the standard deviation of annual returns (k = 252). For example, the implied value

of H for estimating the annual return standard deviation from the standard deviation of daily

returns for the JPY/USD is H = 0.54573. Rescaling the daily return standard deviation to estimate

the standard deviation of weekly JPY/USD returns however yields H = 0.49948. This result is

consistent across all pairs of k and n and all foreign currency pairs, except for annual

GBP/USD returns, which show the opposite result.

Considering the size of implied values of the scale exponents in Table 5, it is not possible to

conclude absolutely that the DMK/USD, JPY/USD and SWF/USD foreign currency series are
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long-term dependent. While values of H for the interval length n = 22 are generally higher

than those for n = 5 and n = 1, none of the H values are significantly greater than H = 0.5.

However, using the classical rescaled range techniques, Peters (1994) found that daily

JPY/USD and DMK/USD returns scaled at H = 0.642 and H = 0.624 respectively. Overall,

lower values of the scale exponent for the GBP/USD at all interval lengths provides support

for acceptance of the null hypothesis for the GBP/USD exchange rate.

(insert Table 6 about here)

Evidence pertaining to the economic significance of the scale exponent values is provided in

Table 6. Using a variation of the Black-Scholes Option Pricing Model for foreign currency

options2, annualised standard deviation estimates for intervals of n = 1, 5, and 22 lags were

used to price in-the-money, at-the-money and out-of-the-money call and put options for each

of the four currency pairs. Annual standard deviations were estimated using Equation (7)

above. Under the assumption that each of the four currency pairs conformed to a Gaussian

random walk, the value of the scale exponent in Equation (7) was H = 0.5. For the calculation

of the Black-Scholes model, spot exchange rates for each currency were their actual value as

at 27 May 1998. In-the-money and out-of-the-money exchange rates were set at -/+ 10.0% of

the spot exchange rate. The domestic (US) and foreign risk-free interest rates were arbitrarily

set at 8.0% and 10.0% each, and the time to maturity was one-half year (180 days based on a

360 day year). Results for each currency pair using rescaled standard deviations for interval

lengths n = 1, 5, and 22 are reported in Table 6. Results using observed annual standard

deviations (k = 252) are also presented. Under the null hypothesis H0, option values derived

from the rescaled standard deviations should not be different from those using the observed

annual standard deviations.

Except for options written on the GBP/USD, option values derived from the rescaled standard

deviations consistently underestimated their real value, based on the observed annual standard

deviation (reported as n=252 last column in Table 6). Values for out-of-the-money call

contracts were underestimated by a maximum of 84.0% (JPY/USD n= 1 call price of 0.0013)

to a minimum of 40.0% (SWF/USD n= 22 call price of 0.0003). For out-of-the-money puts, it

                                                          
2 Option prices were for European calls and puts. The model employed is analogous to the Black-Scholes

continuous dividend option pricing model where the dividend yield (q) is replaced by the foreign risk-
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was a maximum of 89.2% (JPY/USD n=1,5,22 put price of 0.0004). With respect to at-the-

money calls and puts, call contract values were underestimated by a maximum of 25.5%

(JPY/USD n=1 and 5 call price of 0.1825) and a minimum of 16.9% (SWF/USD n=22 call

price of 0.0196). Equivalent put option values were undervalued by a maximum of 19.7%

(JPY/USD n=1 put price of 0.2520) and a minimum of 13% (SWF/USD n=22 put price of

0.261). Finally, prices for in-the-money calls and puts derived from the rescaled standard

deviations were undervalued by less than 1.0%. The result for in-the-money options is

consistent with the option value being determined mostly by its intrinsic value than the level

of volatility, with the reverse being the case for out-of-the money options. The results are also

consistent with lower (higher) option vegas for in-the-money (out-of-the-money) positions.

Across all contracts and for all currency pairs, option values derived from rescaled daily

standard deviations were more highly undervalued than those based on rescaled monthly

standard deviations.

V.  Summary and Conclusions
The correct estimation of financial asset risk has important implications for investors using

standard asset pricing models. Under the usual assumptions of independent and Gaussian

distributed increments, traditional methods of estimating risk have required using an annualised

risk coefficient which is calculated by linear rescaling of the variance from shorter time

intervals. Only when the returns series under observation is independent, will rescaling provide

correct estimates of the underlying level of risk associated with an investment. Dependence

between increments in the returns series will conversely lead the investor to underestimate or

overestimate their exposure to risk. The higher the underlying level of dependence, the greater

the possibility of error in the estimation process.

Examining long-term returns for four spot foreign currencies (DMK/USD, GBP/USD,

SWF/USD and JPY/USD) from February 1985 to May 1998,  the objective of this study was to

determine the statistical and economic implications for investors of rescaling financial asset risk.

Using standard statistical tests, the distribution of returns for each of the four currency series

were shown to be non-normal. However no significant evidence of dependence between series

increments for the four currencies was found.

                                                                                                                                                                                    
free interest rate.
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Estimating scaling relationships between the volatility of returns at different time intervals

produced some evidence of dependence not found using traditional techniques, with three of the

four series tested having scale exponents (H) greater than 0.5 for all time intervals (H = 0.5

being the expected exponent value for independent increments). While the exponent values were

not significantly large enough to conclude in favour of statistical long-term dependence in the

currency returns series, the economic implications of the exponent values were significant.

Using a simple Black-Scholes foreign currency option pricing model, linearly rescaled volatility

estimates were shown to misprice the option value by as much as 25.5% for at-the-money

contracts. These results are significant, since  they demonstrate that even small deviations from

independence in asset returns can result in significant economic benefits or costs. Investors

should therefore exercise caution when using short-term returns to estimate longer-term risk, so

as to avoid underestimating their real exposure to risk.
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TABLE 1
Descriptive Statistics of the

Spot Foreign Currency Interday Returns
22 February 1985 to 27 May 1998

Currency
n = 3327

DMK/USD SWF/USD JPY/USD GBP/USD

Mean -1.80 E-04 -1.80 E04 -2.10 E-04 -1.22 E-04
Standard deviation  7.08 E-03  7.72 E-03  6.86 E-03  6.92 E-03
Skewness -9.60 E-02 -2.10 E-01 -4.10 E-01  1.70 E-03
Excess kurtosis  2.3395  1.8663  3.8328  5.0939
Sum of loge returns -0.6416 -0.6617 -0.6476 -0.4156
Nominal return from
short dollar strategy 52.646% 51.598% 52.331% 65.99%
Anderson-Darling 20.344

p=0.000
14.623
p=0.000

30.064
p=0.000

35.661
p=0.000

Jacque-Bera 763.84 507.30 2129.66 3597.05
Shapiro-Wilk 0.9860

p<0.01
0.9901
p<0.01

0.9777
p<0.01

0.9720
p<0.01

TABLE 2
Correlations of the

Spot Foreign Currency Interday Returns
22 February 1985 to 27 May 1998

DMK/USD SWF/USD JPY/USD

SWF/USD 0.916

p-value 0.000

JPY/USD 0.608 0.612

p-value 0.000 0.000

GBP/USD 0.731 0.698 0.472

p-value 0.000 0.000 0.000
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 TABLE 3
Autocorrelations of the

Spot Foreign Currency Interday Returns
22 February 1985 to 27 May 1998

DMK/USD SWF/USD JPY/USD GBP/USD

Lag 1  0.03  0.03  0.02  0.05
t-statistic
LBQ
p-value

 1.47
 2.17
 0.1407

 1.69
 2.86
 0.0908

 1.21
 1.46
 0.2269

 3.01
 9.05
 0.0026

Lag 2 -0.02  0.00  0.02  0.01
t-statistic
LBQ
p-value

-1.26
 3.76
 0.1526

-0.26
 2.93
 0.2311

 1.23
 2.97
 0.2265

 0.82
 9.73
 0.0077

Lag 5  0.03  0.02 -0.01  0.02
t-statistic
LBQ
p-value

 1.61
 7.87
 0.1636

 1.17
 4.75
 0.4472

-0.54
 5.14
 0.3990

  1.39
19.60
  0.0015

Lag 22 0.00 -0.02 0.01 0.03
t-statistic
LBQ
p-value

0.23
30.04
0.1175

-0.87
32.85
0.0640

0.71
32.58
0.0680

1.78
33.73
0.0524

Lag 252 -0.016 -0.004 0.003 0.001
t-statistic
LBQ
p-value

-0.90
273.71
0.1660

-0.22
258.22
0.3804

0.18
282.61
0.0899

0.02
289.71
0.0514

TABLE 4
Stationarity Tests of the

Spot Foreign Currency Interday Returns
22 February 1985 to 27 May 1998

DMK/USD SWF/USD JPY/USD GBP/USD

DF (0)
ADF(9)

ADF(28)

-56.592
-17.875
-10.305

-56.094
-17.837
-10.030

-56.906
-17.044
-10.077

-55.056
-17.942
-10.368



22

TABLE 5
Implied Scale Exponent (H) for Estimation of k

Interval Standard Deviation from Standard Deviation
of n Interval Returns

Implied Scale Exponent (H)Currency Interval
Length

k = n = 1 n = 5 n = 22
DMK/USD

SWF/USD

JPY/USD

GBP/USD

5
22

252

5
22

252

5
22

252

5
22

252

0.49519
0.50723
0.53400

0.50167
0.51080
0.53510

0.49948
0.52123
0.54573

0.50887
0.51965
0.49887

0.52073
0.54993

0.52104
0.54882

0.54562
0.56472

0.53173
0.49476

0.56680

0.56487

0.57576

0.47341
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TABLE 6
Foreign Currency Option Values

using Implied Annual Standard Deviations

 (A) In-the-money

Currency Exchange Rate Option
Exercise

1a 5b 22c 252d

Call
DMK/USD
SWF/USD
JPY/USD
GBP/USD

0.5607
0.6785
7.2659
1.6307

0.4486
0.5428
5.8127
1.3046

0.1024
0.1240
1.3272
0.2978

0.1024
0.1240
1.3272
0.2978

0.1024
0.1240
1.3276
0.2979

0.1026
0.1243
1.3305
0.2978

Put
DMK/USD
SWF/USD
JPY/USD
GBP/USD

0.5607
0.6785
7.2659
1.6307

0.6729
0.8142
8.7190
1.9568

0.1132
0.1371
1.4669
0.3291

0.1132
0.1371
1.4669
0.3292

0.1132
0.1372
1.4679
0.3293

0.1136
0.1374
1.4737
0.3291

 (B) At-the-money

Currency Exchange Rate Option
Exercise

1 5 22 252

Call
DMK/USD
SWF/USD
JPY/USD
GBP/USD

0.5607
0.6785
7.2659
1.6307

0.5607
0.6785
7.2659
1.6307

0.0141
0.0189
0.1825
0.0385

0.0140
0.0189
0.1823
0.0392

0.0145
0.0196
0.1969
0.0414

0.0175
0.0236
0.2442
0.0383

Put
DMK/USD
SWF/USD
JPY/USD
GBP/USD

0.5607
0.6785
7.2659
1.6307

0.5607
0.6785
7.2659
1.6307

0.0195
0.0254
0.2520
0.0541

0.0193
0.0254
0.2518
0.0548

0.0198
0.0261
0.2664
0.0570

0.0229
0.0300
0.3137
0.0539

 (C) Out-of-the-money

Currency Exchange Rate Option
Exercise

1 5 22 252

Call
DMK/USD
SWF/USD
JPY/USD
GBP/USD

0.5607
0.6785
7.2659
1.6307

0.6729
0.8142
8.7190
1.9568

0.0001
0.0002
0.0013
0.0002

0.0001
0.0003
0.0013
0.0002

0.0001
0.0003
0.0022
0.0003

0.0004
0.0005
0.0080
0.0002

Put
DMK/USD
SWF/USD
JPY/USD
GBP/USD

0.5607
0.6785
7.2659
1.6307

0.4486
0.5428
5.8127
1.3046

0.0000
0.0001
0.0004
0.0001

0.0000
0.0001
0.0004
0.0001

0.0000
0.0001
0.0008
0.0001

0.0002
0.0004
0.0037
0.0001

 Notes:
 a Option value using an implied annual standard deviation from the standard deviation of daily returns.
 b Option value using an implied annual standard deviation from the standard deviation of weekly returns.
 c Option value using an implied annual standard deviation from the standard deviation of monthly returns.
 d Option value using observed standard deviation of annual returns.


